Spaces:
Sleeping
Sleeping
Update app.py
Browse filesupdate new interface
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
-
os.system("pip install pymongo")
|
3 |
from collections import defaultdict
|
4 |
-
from database import save_response
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
import random
|
@@ -11,17 +10,30 @@ css = """
|
|
11 |
{
|
12 |
text-align: right;
|
13 |
}
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
}
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""
|
26 |
|
27 |
file_path = 'instructions/merged.json'
|
@@ -30,7 +42,7 @@ df = pd.read_json(file_path, orient='records', lines=False)
|
|
30 |
# that keeps track of how many times each question has been used
|
31 |
question_count = {index: 0 for index in df.index}
|
32 |
model_rankings = defaultdict(lambda: {'1st': 0, '2nd': 0, '3rd': 0})
|
33 |
-
|
34 |
|
35 |
def get_rank_suffix(rank):
|
36 |
if 11 <= rank <= 13:
|
@@ -42,82 +54,80 @@ def get_rank_suffix(rank):
|
|
42 |
|
43 |
def process_rankings(user_rankings):
|
44 |
print("Processing Rankings:", user_rankings) # Debugging print
|
45 |
-
|
46 |
-
|
47 |
-
rank_suffix = get_rank_suffix(rank)
|
48 |
-
model_rankings[model][f'{rank}{rank_suffix}'] += 1 # Using the correct suffix based on the rank
|
49 |
-
model_rankings_dict = dict(model_rankings)
|
50 |
-
|
51 |
-
save_response(model_rankings_dict)
|
52 |
-
print("Updated Model Rankings:", model_rankings) # Debugging print
|
53 |
return
|
54 |
|
55 |
|
56 |
def get_questions_and_answers():
|
57 |
available_questions = [index for index, count in question_count.items() if count < 3]
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
inputs = []
|
81 |
-
|
82 |
-
for question, answers in questions:
|
83 |
-
# Use an HTML component to display the question
|
84 |
-
inputs.append(gr.Markdown(rtl=True, value= question))
|
85 |
-
|
86 |
-
answers_text = [answer for answer, _ in answers]
|
87 |
-
|
88 |
-
# Append three dropdowns for rankings without repeating the question
|
89 |
-
inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الأول"))
|
90 |
-
inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الثاني"))
|
91 |
-
inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الثالث"))
|
92 |
-
|
93 |
-
outputs = gr.Textbox(elem_id="rtl_text", label="")
|
94 |
-
|
95 |
-
|
96 |
-
def rank_fluency(*dropdown_selections):
|
97 |
-
user_rankings = []
|
98 |
-
for i in range(0, len(dropdown_selections), 4): # Process each set of 3 dropdowns for a question
|
99 |
-
selections = dropdown_selections[i+1:i+4]
|
100 |
-
# Check for duplicate selections within the same question
|
101 |
-
unique_selections = set(tuple(selection) for selection in selections)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
if chosen_answer ==
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
process_rankings(user_rankings)
|
117 |
return "سجلنا ردك، ما قصرت =)"
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
iface = rank_interface()
|
123 |
-
iface.launch()
|
|
|
1 |
import os
|
|
|
2 |
from collections import defaultdict
|
3 |
+
from database import save_response, read_responses
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
import random
|
|
|
10 |
{
|
11 |
text-align: right;
|
12 |
}
|
13 |
+
.usr-inst{
|
14 |
+
text-align:center;
|
15 |
+
background-color: #3e517e;
|
16 |
+
border: solid 1px;
|
17 |
+
border-radius: 5px;
|
18 |
+
padding: 10px;
|
19 |
}
|
20 |
+
.svelte-1kzox3m{
|
21 |
+
justify-content: end;
|
22 |
+
}
|
23 |
+
.svelte-sfqy0y{
|
24 |
+
border:none;
|
25 |
}
|
26 |
+
.svelte-90oupt{
|
27 |
+
background-color: #0b0f19;
|
28 |
+
padding-top: 0px;
|
29 |
+
}
|
30 |
+
#component-4{
|
31 |
+
border: 1px solid;
|
32 |
+
padding: 5px;
|
33 |
+
background-color: #242433;
|
34 |
+
border-radius: 5px;
|
35 |
+
}
|
36 |
+
|
37 |
"""
|
38 |
|
39 |
file_path = 'instructions/merged.json'
|
|
|
42 |
# that keeps track of how many times each question has been used
|
43 |
question_count = {index: 0 for index in df.index}
|
44 |
model_rankings = defaultdict(lambda: {'1st': 0, '2nd': 0, '3rd': 0})
|
45 |
+
curr_order = ['CIDAR', 'CHAT', 'ALPAGASUS']
|
46 |
|
47 |
def get_rank_suffix(rank):
|
48 |
if 11 <= rank <= 13:
|
|
|
54 |
|
55 |
def process_rankings(user_rankings):
|
56 |
print("Processing Rankings:", user_rankings) # Debugging print
|
57 |
+
save_response(user_rankings)
|
58 |
+
print(read_responses())
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return
|
60 |
|
61 |
|
62 |
def get_questions_and_answers():
|
63 |
available_questions = [index for index, count in question_count.items() if count < 3]
|
64 |
+
index = random.sample(available_questions, min(1, len(available_questions)))[0]
|
65 |
+
question_count[index] += 1
|
66 |
+
|
67 |
+
question = df.loc[index, 'instruction']
|
68 |
+
answers_with_models = [
|
69 |
+
(df.loc[index, 'cidar_output'], 'CIDAR'),
|
70 |
+
(df.loc[index, 'chat_output'], 'CHAT'),
|
71 |
+
(df.loc[index, 'alpagasus_output'], 'ALPAGASUS')
|
72 |
+
]
|
73 |
+
random.shuffle(answers_with_models) # Shuffle answers with their IDs
|
74 |
+
curr_order = [model for _, model in answers_with_models]
|
75 |
+
return (question, answers_with_models)
|
76 |
+
|
77 |
+
def reload_components():
|
78 |
+
question, answers = get_questions_and_answers()
|
79 |
+
user_instructions_txt = " في الصفحة التالية ستجد طلب له ثلاث إجابات مختلفة. من فضلك اختر مدي توافق كل إجابة مع الثقافة العربية."
|
80 |
+
radios = []
|
81 |
+
user_instructions = gr.Markdown(rtl=True, value= f'<h1 class="usr-inst">{user_instructions_txt}</h1>')
|
82 |
+
|
83 |
+
question_md = gr.Markdown(rtl=True, value= f'<b> {question} </b>')
|
84 |
+
|
85 |
+
for answer, model in answers:
|
86 |
+
radios.append(gr.Markdown(rtl = True, value= answer))
|
87 |
+
radios.append(gr.Radio(elem_classes = 'rtl', choices = ['متوافق', 'متوافق جزئياً', 'غير متوافق'], value = 'غير متوافق', label = ""))
|
88 |
|
89 |
+
return [user_instructions, question_md] + radios
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
def rank_interface():
|
92 |
+
def rank_fluency(*radio_selections):
|
93 |
+
user_rankings = {}
|
94 |
+
for i in range(0, len(radio_selections), 3): # Process each set of 3 dropdowns for a question
|
95 |
+
selections = radio_selections[i:i+3]
|
96 |
+
for j, chosen_answer in enumerate(selections):
|
97 |
+
model_name = curr_order[j]
|
98 |
+
if chosen_answer == 'غير متوافق':
|
99 |
+
user_rankings[model_name] = 3
|
100 |
+
elif chosen_answer == 'متوافق جزئياً':
|
101 |
+
user_rankings[model_name] = 2
|
102 |
+
elif chosen_answer == 'متوافق':
|
103 |
+
user_rankings[model_name] = 1
|
104 |
process_rankings(user_rankings)
|
105 |
return "سجلنا ردك، ما قصرت =)"
|
106 |
+
|
107 |
+
# Create three dropdowns for each question for 1st, 2nd, and 3rd choices
|
108 |
+
inputs = []
|
109 |
+
with gr.Blocks(css=css) as demo:
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
outptus= reload_components()
|
113 |
+
out_text = gr.Markdown("", rtl = True)
|
114 |
+
|
115 |
+
gr.Button("Submit").click(
|
116 |
+
fn=rank_fluency,
|
117 |
+
inputs=outptus[1:],
|
118 |
+
outputs=out_text
|
119 |
+
).then(
|
120 |
+
fn=reload_components,
|
121 |
+
outputs = outptus
|
122 |
+
)
|
123 |
+
|
124 |
+
gr.Button("Skip").click(
|
125 |
+
fn=reload_components,
|
126 |
+
outputs=outptus
|
127 |
+
)
|
128 |
+
|
129 |
+
return demo
|
130 |
+
|
131 |
+
questions = get_questions_and_answers()
|
132 |
iface = rank_interface()
|
133 |
+
iface.launch(share = True)
|