Spaces:
Runtime error
Runtime error
File size: 15,593 Bytes
68f6a4e 3c2ec3d 68f6a4e d433edf 68f6a4e d433edf 68f6a4e d433edf 3c2ec3d d433edf 3c2ec3d d433edf 3c2ec3d 68f6a4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import os
import glob
import json
import math
import time
import pickle
import openai
import requests
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
from googlesearch import search
from scrapingbee import ScrapingBeeClient
global scraped_folder_path, category_folder_path, log_file_path, openapikey, scrapingbeekey, excel_file
# definition to create folder
def create_folder(_path):
try:
os.makedirs(_path)
return _path
except:
return _path
data_folder = 'data_folder'
scraped_folder = 'scrapped_files'
category_folder = 'categories'
excel_file = 'Scorecard_Final.xlsx'
log_folder = 'log_files'
create_folder(data_folder)
scraped_folder_path = create_folder(f'{data_folder}/{scraped_folder}')
category_folder_path = create_folder(f'{data_folder}/{category_folder}')
log_file_path = create_folder(f'{data_folder}/{log_folder}')
categories_found = [item.split('/')[-1] for item in glob.glob(f'{category_folder_path}/*')]
json_found = [item.split('/')[-1] for item in glob.glob(f'{scraped_folder_path}/*.json')]
def update_json_(x):
new_options = []
for count_item, item in enumerate(sorted(glob.glob(f'{scraped_folder_path}/*'))):
# print(count_item+1)
new_options.append(item.split('/')[-1])
return gr.Dropdown.update(choices=new_options, interactive=True)
# get file score
def get_raw_score(data):
score_dict = {}
for key in data.keys():
score = 0
if "Questions" in data[key].keys():
for question in data[key]['Questions'].keys():
if len(data[key]['Questions'][question]) > 0:
score += 1
if data[key]['Topic'] not in score_dict:
score_dict[data[key]['Topic']] = 0
score_dict[data[key]['Topic']] += score
df = pd.DataFrame(score_dict, index=[0]).T.reset_index()
df.columns = ['theta', 'r']
return df, min(score_dict.values()), sum(score_dict.values())
# getting the overall score
def get_overall_score(name):
# get the raw score
try:
data = json.load(open(f'{scraped_folder_path}/{name}'))
except:
data = json.load(open(name))
score, level, experience = get_raw_score(data)
# adding the polar plots
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r = score.r,
theta = score.theta,
marker=dict(size=10, color = "magenta"),
fill='toself',
))
file_type = name.replace('.json', '')
fig.update_traces(mode="markers", marker=dict(line_color='white', opacity=0.7))
fig.update_layout(title_text=f'{file_type} >> level:{level}, exp:{experience}/100',
polar=dict(radialaxis=dict(range = [0, 20], visible=True,)),
showlegend=False)
return fig
def get_comparative_score(file, group=''):
if group != '':
json_files = glob.glob(f'{category_folder_path}/{group}/*.json')
if len(json_files) > 0:
for enum_jf, jf in enumerate(json_files):
print(enum_jf)
data = json.load(open(jf))
if enum_jf == 0:
df, _, _ = get_raw_score(data)
continue
temp_df, _, _ = get_raw_score(data)
df = pd.concat([df, temp_df])
else:
df = None
fig = get_overall_score(file)
if group != '':
if df is not None:
# adding the polar plots
fig.add_trace(go.Scatterpolar(
r = df.r,
theta = df.theta,
marker=dict(size=7, color = "limegreen"),
))
fig.update_traces(mode="markers", marker=dict(line_color='white', opacity=0.7))
fig.update_layout(polar=dict(radialaxis=dict(range = [0, 20], visible=True,)),
showlegend=False)
return fig
def create_question_dictionary(url, text, questions, question_dictionary, gpt_filter_prompt, useless_urls, completely_useless_urls):
tries = 0
gpt_filter_answer = ''
while tries < 3 and gpt_filter_answer == '':
try:
tries += 1
gpt_filter_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an assistant who helps to extract information of a startup from its homepage. You should answer if the text is about a specific topic. You should only answer with either yes or no as the first word and explain why you made your choice"},
{"role": "user", "content": f"{gpt_filter_prompt} \n {text}" },
])
for choice in gpt_filter_response.choices:
gpt_filter_answer += choice.message.content
except Exception as e:
print("filter tries: ", tries)
print(e)
# if the website is about the general question, then proceed to ask the scoring questions
if gpt_filter_answer == '':
print("Error The gpt filter responded with an empty string")
completely_useless_urls.append([url, gpt_filter_answer])
return question_dictionary, useless_urls, completely_useless_urls
if gpt_filter_answer[:3].lower() == "yes" or gpt_filter_answer[:2].lower() == "ja":
for question in questions:
if type(question) != str:
continue
if question not in question_dictionary.keys():
question_dictionary[question] = []
tries = 0
question_answer = ""
while tries < 3 and question_answer == '':
try:
tries += 1
question_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an assistant who tries to answer always with yes or no in the first place. When yes, you explain the reason for it in 80 words by using a list of short descriptions"},
{"role": "user", "content": f"{question} \n {text}" },
])
for choice in question_response.choices:
question_answer += choice.message.content
except Exception as e:
print("question tries: ", tries)
print(e)
# If the question is answered yes, save the reason and website
if question_answer[:3].lower() == "yes" or question_answer[:2].lower() == "ja":
# save question, url and answer?
question_dictionary[question].append([url, question_answer])
else:
useless_urls.append([url, question_answer])
else:
# safe url that didnt pass the filter
completely_useless_urls.append([url, gpt_filter_answer])
return question_dictionary, useless_urls, completely_useless_urls
def log_to_file(f, general_question, question_dictionary, useless_urls, completely_useless_urls):
f.write("Frage: " + general_question + "\n")
print("Frage: ", general_question)
print("\tAuf den Folgenden Websiten wurden Informationen zu dieser Frage gefunden mit Punktevergabe:")
f.write("\tAuf den Folgenden Websiten wurden Informationen zu dieser Frage gefunden mit Punktevergabe:\n")
for question in question_dictionary.keys():
question_list = question_dictionary[question]
if len(question_list) > 0:
for url, answer in question_list:
print("\t\tQuelle: ", url)
f.write("\t\t--Quelle: " + url + " | ")
print("\t\tAntwort: ", answer)
f.write("Antwort: " + answer.replace("\n", " ") + "\n")
print("\n\tAuf den Folgenden Websiten wurden Informationen zu dieser Frage gefunden, aber keine Punktevergabe:\n")
f.write("\n\tAuf den Folgenden Websiten wurden Informationen zu dieser Frage gefunden, aber keine Punktevergabe:\n")
for u_url in useless_urls:
print("\t\t", u_url)
f.write("\t\t--" + u_url[0] + " | " + u_url[1].replace("\n", " ") + "\n")
print("\n\t Auf den Folgenden Websiten wurden keine Informationen zu dieser Frage gefunden:\n")
f.write("\n\tAuf den Folgenden Websiten wurden keine Informationen zu dieser Frage gefunden:\n")
for cu_url in completely_useless_urls:
print("\t\t", cu_url)
f.write("\t\t--" + cu_url[0]+ " | " + cu_url[1].replace("\n", " ") + "\n")
f.write("---------------------------------------------------------------------------------------------------------------------------------\n")
print("----------------------------------------------------------------------\n")
# constants = pickle.load(open('aux_files/aux_file.exii', 'rb'))
scarpingbeekey = os.environ['getkey']
openai.api_key = os.environ['chatkey']
# openapikey = constants['openapi_key']
# scarpingbeekey = constants['scrapingbee_key']
# os.environ['OPEN_API_KEY'] = openapikey
# openai.api_key = openapikey
def send_request(google_prompt):
response = requests.get(
url="https://app.scrapingbee.com/api/v1/store/google",
params={
"api_key": scarpingbeekey,
"search": google_prompt,
"add_html": True,
"nb_results": 1
},
)
return response.json()
def get_json_dict(df, web_list, progress, name):
filename="/" + name + "_log.txt"
with open(log_file_path+filename, 'w+', encoding='utf-8') as f:
output_dictionary = {}
topics = df['Topic'].unique()
for topic in progress.tqdm(topics, desc='Topic'): ##########
time.sleep(0.2)
print(topic)
df_topic = df[df['Topic'] == topic]
general_questions = df_topic['Questions'].unique()
for general_question in progress.tqdm(general_questions, desc='GenQ'): ###########
time.sleep(0.3)
output_dictionary[general_question] = {"Topic": topic}
df_question = df_topic[df_topic['Questions']==general_question].reset_index()
google_prompt = df_question['Google Prompts'].values[0]
gpt_filter_prompt = df_question['GPT Filter Prompt'].values[0]
questions = df_question.iloc[0, 5:].values.tolist()
question_dictionary = {}
useless_urls = [] # a list of urls that have the information that we are looking for but are answered not with yes
completely_useless_urls = [] # a list of urls that dont have the information that we are looking
# scrape google with google_prompt
request_json = send_request(google_prompt)
search_results = []
num_urls = 1
if 'organic_results' in request_json.keys():
if len(request_json['organic_results']) == 0:
print("organic_results are empty")
else:
for i in range(num_urls):
search_results.append(request_json['organic_results'][i]['url'])
else:
print("organic_results not in request_json")
# adding the extra user defined prompts
search_results = list(set(search_results + web_list))
if len(search_results) == 0:
print("Didnt have any search results for googleprompt:", google_prompt)
continue
# print the first 10 URLs
for url in progress.tqdm(search_results, desc='url'):
time.sleep(0.4)
# scrape the text of the website
client = ScrapingBeeClient(api_key=scarpingbeekey)
url_text = client.get(url,
params = {
'json_response': 'True',
'extract_rules': {"text": "body",},
}
)
json_object = json.loads(url_text.text)
if 'body' not in json_object.keys():
print("json_object has no key: body")
continue
if "text" in json_object['body'].keys():
text_content = json_object['body']['text']
else:
print("json_object['body'] has no key: text")
continue
if len(text_content) == 0:
continue
splitsize = 10000
if len(text_content) > splitsize:
num_splits = math.ceil(len(text_content) / splitsize)
#for i in range(num_splits-1):
for i in range(1):
text = text_content[i*splitsize:(i+1)*splitsize]
question_dictionary, useless_urls, completely_useless_urls = create_question_dictionary(url, text, questions, question_dictionary, gpt_filter_prompt, useless_urls, completely_useless_urls)
text = text_content[(i+1)*splitsize:]
question_dictionary, useless_urls, completely_useless_urls = create_question_dictionary(url, text, questions, question_dictionary, gpt_filter_prompt, useless_urls, completely_useless_urls)
else:
question_dictionary, useless_urls, completely_useless_urls = create_question_dictionary(url, text_content, questions, question_dictionary, gpt_filter_prompt, useless_urls, completely_useless_urls)
log_to_file(f, general_question, question_dictionary, useless_urls, completely_useless_urls)
output_dictionary[general_question]['Questions'] = question_dictionary
return output_dictionary
def scrape_me(name, progress=gr.Progress()):
if name == '':
return f"Scraping not possible, empty entries found !"
#load the excel file
df_reference = pd.read_excel(excel_file, sheet_name="Sheet1")
# working with prompts in first brackets
if ',' in name:
entity_names = name.split(',')
else:
entity_names = [name]
entity_websites = []
for en_num, en in enumerate(entity_names):
if "(" in en:
start = en.find("(")
end = en.find(")")
websites = en[start+1:end].split(";")
entity_names[en_num] = en[:start].strip()
else:
entity_names[en_num] = en.strip()
websites = []
entity_websites.append(websites)
# looping thru' the entity and the prompts
count_web = 0
for en in progress.tqdm(entity_names, desc='iterating through searchable entities'):
time.sleep(0.1)
# replacing the corporate name in the question string
enum_df = df_reference.replace({"<corporate>": en}, regex=True)
# retrieving the scraped data dictionary
json_dict = get_json_dict(enum_df.head(25), entity_websites[count_web], progress, en)
# converting and saving the json file
json_object = json.dumps(json_dict, indent = 4)
json_file = f'{scraped_folder_path}/{en}.json'
with open(json_file, "w") as outfile:
outfile.write(json_object)
count_web += 1
return f"Scraped results for the following entities: {name} !"
with gr.Blocks(title='EXii Startup Scapper') as demo:
with gr.Tab("Scraping Toolbox"):
result_text = gr.Textbox(label='Debug Information', placeholder='Debug Information')
with gr.Row():
scrapin_it_digga = gr.Text(label="Startup to scrape",
info='Separate two startups by a "," and force to seach in custom URLs within "()" and separate URLs ";"',
placeholder='saturn (https://www.saturn.de/; https://www.mediamarkt.de/), cyberport (https://www.cyberport.de/)')
with gr.Row():
scrape_button = gr.Button("Start scraping")
with gr.Column():
with gr.Row():
scrapes_found = gr.Dropdown(json_found, label="Scraped startups", info="Select a scraped json files")
with gr.Row():
json_update_button = gr.Button("Update scrapped data")
with gr.Column():
# with gr.Row():
# show_the_score = gr.Button('Plot score')
sexy_plot = gr.Plot(label='Exponential Growth Score')
json_update_button.click(update_json_, inputs=scrapes_found, outputs=scrapes_found)
scrape_button.click(scrape_me, inputs=scrapin_it_digga, outputs=result_text)
# show_the_score.click(get_comparative_score, inputs=[scrapes_found], outputs=sexy_plot)
scrapes_found.change(get_comparative_score, inputs=[scrapes_found], outputs=sexy_plot)
demo.queue(concurrency_count=4).launch(debug=True) |