Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread | |
from typing import Iterator, List, Tuple | |
import json | |
import gradio as gr | |
import spaces | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from flask import Flask, request, jsonify | |
DESCRIPTION = """\ | |
# Zero GPU Model Comparison Arena | |
Compare two language models using Hugging Face's Zero GPU initiative. | |
Select two different models from the dropdowns and see how they perform on the same input. | |
""" | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 256 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
MODEL_OPTIONS = [ | |
"sarvamai/OpenHathi-7B-Hi-v0.1-Base", | |
"TokenBender/Navarna_v0_1_OpenHermes_Hindi" | |
] | |
models = {} | |
tokenizers = {} | |
# Custom chat templates | |
MISTRAL_TEMPLATE = """<s>[INST] {instruction} [/INST] | |
{response} | |
</s> | |
<s>[INST] {instruction} [/INST] | |
""" | |
LLAMA_TEMPLATE = """<s>[INST] <<SYS>> | |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. | |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. | |
<</SYS>> | |
{instruction} [/INST] | |
{response} | |
</s> | |
<s>[INST] {instruction} [/INST] | |
""" | |
for model_id in MODEL_OPTIONS: | |
tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id) | |
models[model_id] = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
load_in_8bit=True, | |
) | |
models[model_id].eval() | |
# Set custom chat templates | |
if "Navarna" in model_id: | |
tokenizers[model_id].chat_template = MISTRAL_TEMPLATE | |
elif "OpenHathi" in model_id: | |
tokenizers[model_id].chat_template = LLAMA_TEMPLATE | |
# Initialize Flask app | |
app = Flask(__name__) | |
def log_results(): | |
data = request.json | |
# Here you can implement any additional processing or storage logic | |
print("Logged:", json.dumps(data, indent=2)) | |
return jsonify({"status": "success"}), 200 | |
def generate( | |
model_id: str, | |
message: str, | |
chat_history: List[Tuple[str, str]], | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.7, | |
top_p: float = 0.95, | |
) -> Iterator[str]: | |
model = models[model_id] | |
tokenizer = tokenizers[model_id] | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation.extend([ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
def compare_models( | |
model1_name: str, | |
model2_name: str, | |
message: str, | |
chat_history1: List[Tuple[str, str]], | |
chat_history2: List[Tuple[str, str]], | |
max_new_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]: | |
if model1_name == model2_name: | |
error_message = [("System", "Error: Please select two different models.")] | |
return error_message, error_message, chat_history1, chat_history2 | |
output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p))) | |
output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p))) | |
chat_history1.append((message, output1)) | |
chat_history2.append((message, output2)) | |
log_comparison(model1_name, model2_name, message, output1, output2) | |
return chat_history1, chat_history2, chat_history1, chat_history2 | |
def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None): | |
log_data = { | |
"question": question, | |
"model1": {"name": model1_name, "answer": answer1}, | |
"model2": {"name": model2_name, "answer": answer2}, | |
"winner": winner | |
} | |
# Send log data to Flask server | |
import requests | |
try: | |
response = requests.post('http://144.24.151.32:5000/log', json=log_data) | |
if response.status_code == 200: | |
print("Successfully logged to server") | |
else: | |
print(f"Failed to log to server. Status code: {response.status_code}") | |
except requests.RequestException as e: | |
print(f"Error sending log to server: {e}") | |
def vote_better(model1_name, model2_name, question, answer1, answer2, choice): | |
winner = model1_name if choice == "Model 1" else model2_name | |
log_comparison(model1_name, model2_name, question, answer1, answer2, winner) | |
return f"You voted that {winner} performs better. This has been logged." | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0]) | |
chatbot1 = gr.Chatbot(label="Model 1 Output") | |
with gr.Column(): | |
model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1]) | |
chatbot2 = gr.Chatbot(label="Model 2 Output") | |
text_input = gr.Textbox(label="Input Text", lines=3) | |
with gr.Row(): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95) | |
compare_btn = gr.Button("Compare Models") | |
with gr.Row(): | |
better1_btn = gr.Button("Model 1 is Better") | |
better2_btn = gr.Button("Model 2 is Better") | |
vote_output = gr.Textbox(label="Voting Result") | |
compare_btn.click( | |
compare_models, | |
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p], | |
outputs=[chatbot1, chatbot2, chatbot1, chatbot2] | |
) | |
better1_btn.click( | |
vote_better, | |
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)], | |
outputs=[vote_output] | |
) | |
better2_btn.click( | |
vote_better, | |
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)], | |
outputs=[vote_output] | |
) | |
if __name__ == "__main__": | |
# Start Flask server in a separate thread | |
flask_thread = Thread(target=app.run, kwargs={"host": "0.0.0.0", "port": 5000}) | |
flask_thread.start() | |
# Start Gradio app | |
demo.queue(max_size=10).launch() |