gemma-10m / app.py
archit11's picture
Update app.py
7ae33d4 verified
raw
history blame
4.47 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
gemma 10m context model
"""
LICENSE = """
<p/>
--- a
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgg06dhS6iRpIv8hvyonlwncW-RC5n59E8vhaWRgIVqTP-Z1AbTBDtdJsX8ClDILimlGWlRAIORuZn8349TfUFmgqYyCRcoctTvNC_Kv70z41hCKd-0Fy4Ic4EgKyY0LxQ5rDt1eXi3jvEcTxgTC62glTl4e5Cffge50iiF0fxCBqmq9v-u7KTfIL4Lxb0/s1600/Gemma_social.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">gemma10m</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "mustafaaljadery/gemma-2B-10M"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
chatbot=gr.Chatbot(height=650, min_width=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(label="System prompt", lines=26),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello"]
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()