Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,55 +3,51 @@ import gradio as gr
|
|
3 |
import librosa
|
4 |
import torch
|
5 |
import spaces
|
|
|
6 |
|
7 |
@spaces.GPU(duration=120)
|
8 |
def transcribe_and_respond(audio_file):
|
9 |
try:
|
10 |
-
# Load the model pipeline
|
11 |
pipe = transformers.pipeline(
|
12 |
model='sarvamai/shuka_v1',
|
13 |
trust_remote_code=True,
|
14 |
device=0,
|
15 |
torch_dtype=torch.bfloat16
|
16 |
)
|
17 |
-
|
18 |
# Load the audio file
|
19 |
audio, sr = librosa.load(audio_file, sr=16000)
|
20 |
-
|
21 |
-
# Print
|
22 |
-
print(f"Audio
|
23 |
-
|
24 |
-
# Prepare turns with a placeholder for the audio
|
25 |
turns = [
|
26 |
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
27 |
{'role': 'user', 'content': '<|audio|>'}
|
28 |
]
|
29 |
-
|
30 |
-
# Print the
|
31 |
-
print(f"
|
32 |
-
|
33 |
-
#
|
34 |
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
35 |
-
|
36 |
-
# Print the output from the model
|
37 |
print(f"Model output: {output}")
|
38 |
-
|
39 |
-
# Return the output for the Gradio interface
|
40 |
return output
|
41 |
|
42 |
except Exception as e:
|
43 |
return f"Error: {str(e)}"
|
44 |
|
45 |
-
# Set up the Gradio interface
|
46 |
iface = gr.Interface(
|
47 |
fn=transcribe_and_respond,
|
48 |
-
inputs=gr.Audio(sources="microphone", type="filepath"),
|
49 |
-
outputs="text",
|
50 |
title="Live Transcription and Response",
|
51 |
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
52 |
-
live=True
|
53 |
)
|
54 |
|
55 |
-
# Launch the interface
|
56 |
if __name__ == "__main__":
|
57 |
iface.launch()
|
|
|
3 |
import librosa
|
4 |
import torch
|
5 |
import spaces
|
6 |
+
import numpy as np
|
7 |
|
8 |
@spaces.GPU(duration=120)
|
9 |
def transcribe_and_respond(audio_file):
|
10 |
try:
|
|
|
11 |
pipe = transformers.pipeline(
|
12 |
model='sarvamai/shuka_v1',
|
13 |
trust_remote_code=True,
|
14 |
device=0,
|
15 |
torch_dtype=torch.bfloat16
|
16 |
)
|
17 |
+
|
18 |
# Load the audio file
|
19 |
audio, sr = librosa.load(audio_file, sr=16000)
|
20 |
+
|
21 |
+
# Print audio properties for debugging
|
22 |
+
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
|
23 |
+
|
|
|
24 |
turns = [
|
25 |
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
26 |
{'role': 'user', 'content': '<|audio|>'}
|
27 |
]
|
28 |
+
|
29 |
+
# Debug: Print the initial turns
|
30 |
+
print(f"Initial turns: {turns}")
|
31 |
+
|
32 |
+
# Call the model with the audio and prompt
|
33 |
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
34 |
+
|
35 |
+
# Debug: Print the final output from the model
|
36 |
print(f"Model output: {output}")
|
37 |
+
|
|
|
38 |
return output
|
39 |
|
40 |
except Exception as e:
|
41 |
return f"Error: {str(e)}"
|
42 |
|
|
|
43 |
iface = gr.Interface(
|
44 |
fn=transcribe_and_respond,
|
45 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
46 |
+
outputs="text",
|
47 |
title="Live Transcription and Response",
|
48 |
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
49 |
+
live=True
|
50 |
)
|
51 |
|
|
|
52 |
if __name__ == "__main__":
|
53 |
iface.launch()
|