yt-chunks / app.py
archit11's picture
Update app.py
3d79800 verified
import spaces
import gradio as gr
import pandas as pd
import yt_dlp
import os
from semantic_chunkers import StatisticalChunker
from semantic_router.encoders import HuggingFaceEncoder
from faster_whisper import WhisperModel
import io
# Function to download YouTube audio and return it as a BytesIO object
def download_youtube_audio(url, preferred_quality="192"):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': preferred_quality,
}],
'outtmpl': '-', # Output to stdout
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=False)
video_title = info_dict.get('title', None)
print(f"Downloading audio for: {video_title}")
# Download audio to a BytesIO object
audio_buffer = io.BytesIO()
ydl.download([url], audio_buffer)
audio_buffer.seek(0)
print("Audio download complete")
return audio_buffer
except yt_dlp.utils.DownloadError as e:
print(f"Error downloading audio: {e}")
return None
# Function to transcribe audio from BytesIO using WhisperModel
@spaces.GPU
def transcribe(audio_buffer, model_name="medium"):
model = WhisperModel(model_name)
print("Reading audio buffer")
# Hypothetical support for BytesIO object
segments, info = model.transcribe(audio_buffer)
return segments
# Function to process segments and convert them into a DataFrame
@spaces.GPU
def process_segments(segments):
result = {}
print("Processing...")
for i, segment in enumerate(segments):
chunk_id = f"chunk_{i}"
result[chunk_id] = {
'chunk_id': segment.id,
'chunk_length': segment.end - segment.start,
'text': segment.text,
'start_time': segment.start,
'end_time': segment.end
}
df = pd.DataFrame.from_dict(result, orient='index')
df.to_csv('final.csv') # Save DataFrame to final.csv
return df
# Gradio interface functions
@spaces.GPU
def generate_transcript(youtube_url, model_name="large-v3"):
audio_buffer = download_youtube_audio(youtube_url)
if audio_buffer is None:
return "Error downloading audio"
segments = transcribe(audio_buffer, model_name)
df = process_segments(segments)
lis = list(df['text'])
encoder = HuggingFaceEncoder(name="sentence-transformers/all-MiniLM-L6-v2")
chunker = StatisticalChunker(encoder=encoder, dynamic_threshold=True, min_split_tokens=30, max_split_tokens=40, window_size=2, enable_statistics=False)
chunks = chunker._chunk(lis)
row_index = 0
for i in range(len(chunks)):
for j in range(len(chunks[i].splits)):
df.at[row_index, 'chunk_id2'] = f'chunk_{i}'
row_index += 1
grouped = df.groupby('chunk_id2').agg({
'start_time': 'min',
'end_time': 'max',
'text': lambda x: ' '.join(x),
'chunk_id': list
}).reset_index()
grouped = grouped.rename(columns={'chunk_id': 'chunk_ids'})
grouped['chunk_length'] = grouped['end_time'] - grouped['start_time']
grouped['chunk_id'] = grouped['chunk_id2']
grouped = grouped.drop(columns=['chunk_id2', 'chunk_ids'])
grouped.to_csv('final.csv')
df = pd.read_csv("final.csv")
transcripts = df.to_dict(orient='records')
return transcripts
# Function to download video using yt-dlp and generate transcript HTML
def download_video(youtube_url):
ydl_opts = {
'format': 'mp4',
'outtmpl': 'downloaded_video.mp4',
'quiet': True
}
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(youtube_url, download=False)
video_path = 'downloaded_video.mp4'
if not os.path.exists(video_path):
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
transcripts = generate_transcript(youtube_url)
transcript_html = ""
for t in transcripts:
transcript_html += f'<div class="transcript-block"><a href="#" onclick="var video = document.getElementById(\'video-player\').querySelector(\'video\'); video.currentTime={t["start_time"]}; return false;">' \
f'[{t["start_time"]:.2f} - {t["end_time"]:.2f}]<br>{t["text"]}</a></div>'
return video_path, transcript_html
# Function to search the transcript
def search_transcript(keyword):
transcripts = pd.read_csv("final.csv").to_dict(orient='records')
search_results = ""
for t in transcripts:
if keyword.lower() in t['text'].lower():
search_results += f'<div class="transcript-block"><a href="#" onclick="var video = document.getElementById(\'video-player\').querySelector(\'video\'); video.currentTime={t["start_time"]}; return false;">' \
f'[{t["start_time"]:.2f} - {t["end_time"]:.2f}]<br>{t["text"]}</a></div>'
return search_results
# CSS for styling
css = """
.fixed-video { width: 480px !important; height: 270px !important; }
.fixed-transcript { width: 480px !important; height: 270px !important; overflow-y: auto; }
.transcript-block { margin: 10px 0; padding: 10px; border: 1px solid #ddd; border-radius: 5px; background-color: #f9f9f9; }
.transcript-block a { text-decoration: none; color: #007bff; }
.transcript-block a:hover { text-decoration: underline; }
"""
# Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# YouTube Video Player with Clickable Transcript")
with gr.Row():
youtube_url = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video link here")
download_button = gr.Button("Download and Display Transcript")
with gr.Row():
video = gr.Video(label="Video Player", elem_id="video-player", elem_classes="fixed-video")
transcript_display = gr.HTML(label="Transcript", elem_classes="fixed-transcript")
with gr.Row():
search_box = gr.Textbox(label="Search Transcript", placeholder="Enter keyword to search")
search_button = gr.Button("Search")
search_results_display = gr.HTML(label="Search Results", elem_classes="fixed-transcript")
# On button click, download the video and display the transcript
def display_transcript(youtube_url):
video_path, transcript_html = download_video(youtube_url)
return video_path, transcript_html
download_button.click(fn=display_transcript, inputs=youtube_url, outputs=[video, transcript_display])
# On search button click, search the transcript and display results
search_button.click(fn=search_transcript, inputs=search_box, outputs=search_results_display)
# Launch the interface
demo.launch()