|
|
|
import spaces |
|
import gradio as gr |
|
import pandas as pd |
|
import yt_dlp |
|
import os |
|
from semantic_chunkers import StatisticalChunker |
|
from semantic_router.encoders import HuggingFaceEncoder |
|
from faster_whisper import WhisperModel |
|
import io |
|
|
|
|
|
def download_youtube_audio(url, preferred_quality="192"): |
|
ydl_opts = { |
|
'format': 'bestaudio/best', |
|
'postprocessors': [{ |
|
'key': 'FFmpegExtractAudio', |
|
'preferredcodec': 'mp3', |
|
'preferredquality': preferred_quality, |
|
}], |
|
'outtmpl': '-', |
|
} |
|
|
|
try: |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
info_dict = ydl.extract_info(url, download=False) |
|
video_title = info_dict.get('title', None) |
|
print(f"Downloading audio for: {video_title}") |
|
|
|
|
|
audio_buffer = io.BytesIO() |
|
ydl.download([url], audio_buffer) |
|
audio_buffer.seek(0) |
|
print("Audio download complete") |
|
return audio_buffer |
|
|
|
except yt_dlp.utils.DownloadError as e: |
|
print(f"Error downloading audio: {e}") |
|
return None |
|
|
|
|
|
@spaces.GPU |
|
def transcribe(audio_buffer, model_name="medium"): |
|
model = WhisperModel(model_name) |
|
print("Reading audio buffer") |
|
|
|
|
|
segments, info = model.transcribe(audio_buffer) |
|
return segments |
|
|
|
|
|
@spaces.GPU |
|
def process_segments(segments): |
|
result = {} |
|
print("Processing...") |
|
for i, segment in enumerate(segments): |
|
chunk_id = f"chunk_{i}" |
|
result[chunk_id] = { |
|
'chunk_id': segment.id, |
|
'chunk_length': segment.end - segment.start, |
|
'text': segment.text, |
|
'start_time': segment.start, |
|
'end_time': segment.end |
|
} |
|
df = pd.DataFrame.from_dict(result, orient='index') |
|
df.to_csv('final.csv') |
|
return df |
|
|
|
|
|
@spaces.GPU |
|
def generate_transcript(youtube_url, model_name="large-v3"): |
|
audio_buffer = download_youtube_audio(youtube_url) |
|
if audio_buffer is None: |
|
return "Error downloading audio" |
|
|
|
segments = transcribe(audio_buffer, model_name) |
|
df = process_segments(segments) |
|
|
|
lis = list(df['text']) |
|
encoder = HuggingFaceEncoder(name="sentence-transformers/all-MiniLM-L6-v2") |
|
chunker = StatisticalChunker(encoder=encoder, dynamic_threshold=True, min_split_tokens=30, max_split_tokens=40, window_size=2, enable_statistics=False) |
|
chunks = chunker._chunk(lis) |
|
|
|
row_index = 0 |
|
for i in range(len(chunks)): |
|
for j in range(len(chunks[i].splits)): |
|
df.at[row_index, 'chunk_id2'] = f'chunk_{i}' |
|
row_index += 1 |
|
|
|
grouped = df.groupby('chunk_id2').agg({ |
|
'start_time': 'min', |
|
'end_time': 'max', |
|
'text': lambda x: ' '.join(x), |
|
'chunk_id': list |
|
}).reset_index() |
|
|
|
grouped = grouped.rename(columns={'chunk_id': 'chunk_ids'}) |
|
grouped['chunk_length'] = grouped['end_time'] - grouped['start_time'] |
|
grouped['chunk_id'] = grouped['chunk_id2'] |
|
grouped = grouped.drop(columns=['chunk_id2', 'chunk_ids']) |
|
grouped.to_csv('final.csv') |
|
df = pd.read_csv("final.csv") |
|
transcripts = df.to_dict(orient='records') |
|
|
|
return transcripts |
|
|
|
|
|
def download_video(youtube_url): |
|
ydl_opts = { |
|
'format': 'mp4', |
|
'outtmpl': 'downloaded_video.mp4', |
|
'quiet': True |
|
} |
|
|
|
with yt_dlp.YoutubeDL({'quiet': True}) as ydl: |
|
info_dict = ydl.extract_info(youtube_url, download=False) |
|
video_path = 'downloaded_video.mp4' |
|
|
|
if not os.path.exists(video_path): |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
ydl.download([youtube_url]) |
|
|
|
transcripts = generate_transcript(youtube_url) |
|
transcript_html = "" |
|
for t in transcripts: |
|
transcript_html += f'<div class="transcript-block"><a href="#" onclick="var video = document.getElementById(\'video-player\').querySelector(\'video\'); video.currentTime={t["start_time"]}; return false;">' \ |
|
f'[{t["start_time"]:.2f} - {t["end_time"]:.2f}]<br>{t["text"]}</a></div>' |
|
|
|
return video_path, transcript_html |
|
|
|
|
|
def search_transcript(keyword): |
|
transcripts = pd.read_csv("final.csv").to_dict(orient='records') |
|
search_results = "" |
|
for t in transcripts: |
|
if keyword.lower() in t['text'].lower(): |
|
search_results += f'<div class="transcript-block"><a href="#" onclick="var video = document.getElementById(\'video-player\').querySelector(\'video\'); video.currentTime={t["start_time"]}; return false;">' \ |
|
f'[{t["start_time"]:.2f} - {t["end_time"]:.2f}]<br>{t["text"]}</a></div>' |
|
return search_results |
|
|
|
|
|
css = """ |
|
.fixed-video { width: 480px !important; height: 270px !important; } |
|
.fixed-transcript { width: 480px !important; height: 270px !important; overflow-y: auto; } |
|
.transcript-block { margin: 10px 0; padding: 10px; border: 1px solid #ddd; border-radius: 5px; background-color: #f9f9f9; } |
|
.transcript-block a { text-decoration: none; color: #007bff; } |
|
.transcript-block a:hover { text-decoration: underline; } |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# YouTube Video Player with Clickable Transcript") |
|
|
|
with gr.Row(): |
|
youtube_url = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video link here") |
|
download_button = gr.Button("Download and Display Transcript") |
|
|
|
with gr.Row(): |
|
video = gr.Video(label="Video Player", elem_id="video-player", elem_classes="fixed-video") |
|
transcript_display = gr.HTML(label="Transcript", elem_classes="fixed-transcript") |
|
|
|
with gr.Row(): |
|
search_box = gr.Textbox(label="Search Transcript", placeholder="Enter keyword to search") |
|
search_button = gr.Button("Search") |
|
search_results_display = gr.HTML(label="Search Results", elem_classes="fixed-transcript") |
|
|
|
|
|
def display_transcript(youtube_url): |
|
video_path, transcript_html = download_video(youtube_url) |
|
return video_path, transcript_html |
|
|
|
download_button.click(fn=display_transcript, inputs=youtube_url, outputs=[video, transcript_display]) |
|
|
|
|
|
search_button.click(fn=search_transcript, inputs=search_box, outputs=search_results_display) |
|
|
|
|
|
demo.launch() |
|
|