Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import uuid
|
4 |
+
import yt_dlp as youtube_dl
|
5 |
+
from typing import Generator
|
6 |
+
from faster_whisper import WhisperModel
|
7 |
+
import pandas as pd
|
8 |
+
from typing import Generator
|
9 |
+
from faster_whisper import WhisperModel
|
10 |
+
import pandas as pd
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
class YouTubeTranscriber:
|
14 |
+
def __init__(self, model_path: str):
|
15 |
+
self.model = WhisperModel(model_path)
|
16 |
+
|
17 |
+
def download_audio(self, url: str, preferred_quality: str = "192") -> str:
|
18 |
+
file_name = f"{uuid.uuid4()}.mp3"
|
19 |
+
output_path = os.path.join("/tmp", file_name) # Use /tmp directory for temporary storage
|
20 |
+
|
21 |
+
ydl_opts = {
|
22 |
+
'format': 'bestaudio/best',
|
23 |
+
'postprocessors': [{
|
24 |
+
'key': 'FFmpegExtractAudio',
|
25 |
+
'preferredcodec': 'mp3',
|
26 |
+
'preferredquality': preferred_quality,
|
27 |
+
}],
|
28 |
+
'outtmpl': output_path, # Specify the output path and file name
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
33 |
+
info_dict = ydl.extract_info(url, download=False)
|
34 |
+
video_title = info_dict.get('title', 'Unknown title')
|
35 |
+
print(f"Downloading audio for: {video_title}")
|
36 |
+
|
37 |
+
ydl.download([url])
|
38 |
+
print(f"Audio file saved as: {output_path}")
|
39 |
+
|
40 |
+
return output_path
|
41 |
+
|
42 |
+
except youtube_dl.utils.DownloadError as e:
|
43 |
+
print(f"Error downloading audio: {e}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
def transcribe_audio(self, path: str) -> Generator:
|
47 |
+
print(f"Reading {path}")
|
48 |
+
segments, _ = self.model.transcribe(path)
|
49 |
+
return segments
|
50 |
+
|
51 |
+
def process_segments(self, segments: Generator) -> pd.DataFrame:
|
52 |
+
result = []
|
53 |
+
for i, segment in enumerate(segments):
|
54 |
+
result.append({
|
55 |
+
'chunk_id': f"chunk_{i}",
|
56 |
+
'chunk_length': segment.end - segment.start,
|
57 |
+
'text': segment.text,
|
58 |
+
'start_time': segment.start,
|
59 |
+
'end_time': segment.end
|
60 |
+
})
|
61 |
+
|
62 |
+
df = pd.DataFrame(result)
|
63 |
+
return df
|
64 |
+
|
65 |
+
# Function to be called by the Gradio interface
|
66 |
+
def transcribe_youtube_video(url: str, model_path: str = "distil-large-v2") -> str:
|
67 |
+
yt_transcriber = YouTubeTranscriber(model_path)
|
68 |
+
audio_path = yt_transcriber.download_audio(url)
|
69 |
+
|
70 |
+
if audio_path:
|
71 |
+
segments = yt_transcriber.transcribe_audio(audio_path)
|
72 |
+
df = yt_transcriber.process_segments(segments)
|
73 |
+
output_csv = os.path.join("/tmp", f"{uuid.uuid4()}.csv")
|
74 |
+
df.to_csv(output_csv, index=False)
|
75 |
+
return output_csv
|
76 |
+
else:
|
77 |
+
return "Failed to download audio."
|
78 |
+
|
79 |
+
|
80 |
+
import gradio as gr
|
81 |
+
|
82 |
+
interface = gr.Interface(
|
83 |
+
fn=transcribe_youtube_video,
|
84 |
+
inputs=[
|
85 |
+
gr.Textbox(lines=1, placeholder="Enter YouTube URL here...", label="YouTube URL"),
|
86 |
+
gr.Textbox(lines=1, label="Whisper Model Path")
|
87 |
+
],
|
88 |
+
outputs=gr.File(label="Transcribed Segments CSV"), # Use gr.File directly
|
89 |
+
title="YouTube Audio Transcriber",
|
90 |
+
description="Enter a YouTube URL to download the audio and transcribe it using Whisper."
|
91 |
+
)
|
92 |
+
|
93 |
+
# Launch the interface
|
94 |
+
interface.launch()
|