archit11 commited on
Commit
a2632d3
·
verified ·
1 Parent(s): 60a1d05

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import uuid
4
+ import yt_dlp as youtube_dl
5
+ from typing import Generator
6
+ from faster_whisper import WhisperModel
7
+ import pandas as pd
8
+ from typing import Generator
9
+ from faster_whisper import WhisperModel
10
+ import pandas as pd
11
+ import gradio as gr
12
+
13
+ class YouTubeTranscriber:
14
+ def __init__(self, model_path: str):
15
+ self.model = WhisperModel(model_path)
16
+
17
+ def download_audio(self, url: str, preferred_quality: str = "192") -> str:
18
+ file_name = f"{uuid.uuid4()}.mp3"
19
+ output_path = os.path.join("/tmp", file_name) # Use /tmp directory for temporary storage
20
+
21
+ ydl_opts = {
22
+ 'format': 'bestaudio/best',
23
+ 'postprocessors': [{
24
+ 'key': 'FFmpegExtractAudio',
25
+ 'preferredcodec': 'mp3',
26
+ 'preferredquality': preferred_quality,
27
+ }],
28
+ 'outtmpl': output_path, # Specify the output path and file name
29
+ }
30
+
31
+ try:
32
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
33
+ info_dict = ydl.extract_info(url, download=False)
34
+ video_title = info_dict.get('title', 'Unknown title')
35
+ print(f"Downloading audio for: {video_title}")
36
+
37
+ ydl.download([url])
38
+ print(f"Audio file saved as: {output_path}")
39
+
40
+ return output_path
41
+
42
+ except youtube_dl.utils.DownloadError as e:
43
+ print(f"Error downloading audio: {e}")
44
+ return None
45
+
46
+ def transcribe_audio(self, path: str) -> Generator:
47
+ print(f"Reading {path}")
48
+ segments, _ = self.model.transcribe(path)
49
+ return segments
50
+
51
+ def process_segments(self, segments: Generator) -> pd.DataFrame:
52
+ result = []
53
+ for i, segment in enumerate(segments):
54
+ result.append({
55
+ 'chunk_id': f"chunk_{i}",
56
+ 'chunk_length': segment.end - segment.start,
57
+ 'text': segment.text,
58
+ 'start_time': segment.start,
59
+ 'end_time': segment.end
60
+ })
61
+
62
+ df = pd.DataFrame(result)
63
+ return df
64
+
65
+ # Function to be called by the Gradio interface
66
+ def transcribe_youtube_video(url: str, model_path: str = "distil-large-v2") -> str:
67
+ yt_transcriber = YouTubeTranscriber(model_path)
68
+ audio_path = yt_transcriber.download_audio(url)
69
+
70
+ if audio_path:
71
+ segments = yt_transcriber.transcribe_audio(audio_path)
72
+ df = yt_transcriber.process_segments(segments)
73
+ output_csv = os.path.join("/tmp", f"{uuid.uuid4()}.csv")
74
+ df.to_csv(output_csv, index=False)
75
+ return output_csv
76
+ else:
77
+ return "Failed to download audio."
78
+
79
+
80
+ import gradio as gr
81
+
82
+ interface = gr.Interface(
83
+ fn=transcribe_youtube_video,
84
+ inputs=[
85
+ gr.Textbox(lines=1, placeholder="Enter YouTube URL here...", label="YouTube URL"),
86
+ gr.Textbox(lines=1, label="Whisper Model Path")
87
+ ],
88
+ outputs=gr.File(label="Transcribed Segments CSV"), # Use gr.File directly
89
+ title="YouTube Audio Transcriber",
90
+ description="Enter a YouTube URL to download the audio and transcribe it using Whisper."
91
+ )
92
+
93
+ # Launch the interface
94
+ interface.launch()