Spaces:
Runtime error
Runtime error
File size: 7,616 Bytes
d51b5dd b2fe07f d51b5dd c8f9fe3 d51b5dd ea57346 d51b5dd 9034e05 d51b5dd d27b2fd d51b5dd e2aff85 d51b5dd b2fe07f 0151cf2 b2fe07f d51b5dd 310f3be d51b5dd 7bb0abc d51b5dd 0151cf2 d51b5dd 7bb0abc d51b5dd 4c4b76e b2fe07f 0151cf2 d51b5dd 1d25a7a 0151cf2 d51b5dd e11de81 0151cf2 e11de81 d51b5dd e11de81 d51b5dd 0151cf2 d51b5dd 2c54e8d d51b5dd 73c177a 2233cc7 9c9d80a ee7218f 263c757 ee7218f 2233cc7 d51b5dd 9adedb7 401dc2f 9adedb7 280001e 9adedb7 280001e 9adedb7 280001e 9adedb7 280001e 9adedb7 310f3be 9adedb7 280001e 9adedb7 f64ce17 a5af3f9 f64ce17 9adedb7 280001e a5af3f9 280001e 9adedb7 280001e 310f3be 73c177a a5af3f9 c6b2e9c 280001e d51b5dd c18ab4f 9c92cbb 9adedb7 280001e 0151cf2 7d2b5b9 d51b5dd 0151cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from pathlib import Path
from num2words import num2words
import numpy as np
import os
import random
import re
import textwrap
import torch
from shapely.geometry.polygon import Polygon
from shapely.affinity import scale
import aggdraw
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
import gradio as gr
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
finetuned = AutoModelForCausalLM.from_pretrained('model')
tokenizer = AutoTokenizer.from_pretrained('gpt2')
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
finetuned = finetuned.to(device)
# Utility functions
def containsNumber(value):
for character in value:
if character.isdigit():
return True
return False
def creativity(intensity):
if(intensity == 'Low'):
top_p = 0.95
top_k = 10
elif(intensity == 'Medium'):
top_p = 0.9
top_k = 50
if(intensity == 'High'):
top_p = 0.85
top_k = 100
return top_p, top_k
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
"balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}
architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255],
[6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
regex = re.compile(".*?\((.*?)\)")
def draw_polygons(polygons, colors, im_size=(512, 512), b_color="white", fpath=None):
image = Image.new("RGBA", im_size, color="white")
draw = aggdraw.Draw(image)
for poly, color, in zip(polygons, colors):
#get initial polygon coordinates
xy = poly.exterior.xy
coords = np.dstack((xy[1], xy[0])).flatten()
# draw it on canvas, with the appropriate colors
brush = aggdraw.Brush((0, 0, 0), opacity=255)
draw.polygon(coords, brush)
#get inner polygon coordinates
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
if small_poly.geom_type == 'MultiPolygon':
mycoordslist = [list(x.exterior.coords) for x in small_poly]
for coord in mycoordslist:
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
brush2 = aggdraw.Brush((0, 0, 0), opacity=255)
draw.polygon(coords, brush2)
elif poly.geom_type == 'Polygon':
#get inner polygon coordinates
xy2 = small_poly.exterior.xy
coords2 = np.dstack((xy2[1], xy2[0])).flatten()
# draw it on canvas, with the appropriate colors
brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255)
draw.polygon(coords2, brush2)
image = Image.frombytes("RGBA", im_size, draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM)
if(fpath):
image.save(fpath, quality=100, subsampling=0)
return draw, image
def prompt_to_layout(user_prompt, intensity, fpath=None):
if(containsNumber(user_prompt) == True):
spaced_prompt = user_prompt.split(' ')
new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt])
model_prompt = '[User prompt] {} [Layout]'.format(new_prompt)
top_p, top_k = creativity(intensity)
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
input_ids = tokenizer(model_prompt, return_tensors='pt').to(device)
output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k,
eos_token_id=50256, max_length=400)
output = tokenizer.batch_decode(output, skip_special_tokens=True)
layout = output[0].split('[User prompt]')[1].split('[Layout] ')[1].split(', ')
spaces = [txt.split(':')[0] for txt in layout]
coordinates = [txt.split(':')[1] for txt in layout]
coordinates = [re.findall(regex, coord) for coord in coordinates]
polygons = []
for coord in coordinates:
polygons.append([point.split(',') for point in coord])
geom = []
for poly in polygons:
scaled_poly = scale(Polygon(np.array(poly, dtype=int)), xfact=2, yfact=2, origin=(0,0))
geom.append(scaled_poly)
#geom.append(Polygon(np.array(poly, dtype=int)))
colors = [architext_colors[housegan_labels[space]] for space in spaces]
_, im = draw_polygons(geom, colors, fpath=fpath)
html = '<img class="labels" src="images/labels.png" />'
legend = Image.open("labels.png")
imgs_comb = np.vstack([legend, im])
imgs_comb = Image.fromarray(imgs_comb)
return imgs_comb
# Gradio App
custom_css="""
@import url("https://use.typekit.net/nid3pfr.css");
.gradio_page {
display: flex;
width: 100vw;
min-height: 50vh;
flex-direction: column;
justify-content: center;
align-items: center;
margin: 0px;
max-width: 100vw;
background: #FFFFFF;
}
.gradio_interface {
width: 100vw;
max-width: 1500px;
}
.gradio_page[theme=default] .panel_buttons {
justify-content: flex-end;
}
.gradio_page[theme=default] .panel_button {
flex: 0 0 0;
min-width: 150px;
}
.gradio_page[theme=default] .gradio_interface .panel_button.submit {
background: #11213A;
border-radius: 5px;
color: #FFFFFF;
text-transform: uppercase;
min-width: 150px;
height: 4em;
letter-spacing: 0.15em;
flex: 0 0 0;
}
.gradio_page[theme=default] .gradio_interface .panel_button.submit:hover {
background: #000000;
}
.input_text:focus {
border-color: #FA7880;
}
.gradio_page[theme=default] .gradio_interface .input_text input,
.gradio_page[theme=default] .gradio_interface .input_text textarea {
font: 200 45px garamond-premier-pro-display, serif;
line-height: 110%;
color: #11213A;
border-radius: 5px;
padding: 15px;
border: none;
background: #F2F4F4;
}
.input_text textarea:focus-visible {
outline: none;
}
.gradio_page[theme=default] .gradio_interface .input_radio .radio_item.selected {
background-color: #11213A;
}
.gradio_page[theme=default] .gradio_interface .input_radio .selected .radio_circle {
border-color: #4365c4;
}
.gradio_page[theme=default] .gradio_interface .output_image {
width: 100%;
height: 40vw;
max-height: 630px;
}
.gradio_page[theme=default] .gradio_interface .output_image .image_preview_holder {
background: transparent;
}
.panel:nth-child(1) {
margin-left: 50px;
margin-right: 50px;
margin-bottom: 80px;
max-width: 750px;
}
.panel {
background: transparent;
}
.gradio_page[theme=default] .gradio_interface .component_set {
background: transparent;
}
.panel:nth-child(2) .gradio_page[theme=default] .gradio_interface .panel_header {
display: none;
}
.labels {
height: 20px;
width: auto;
}
"""
creative_slider = gr.inputs.Radio(["Low", "Medium", "High"], default="Low", label='Creativity')
textbox = gr.inputs.Textbox(placeholder='An apartment with two bedrooms and one bathroom', lines="3",
label="DESCRIBE YOUR IDEAL APARTMENT")
generated = gr.outputs.Image(label='Generated Layout')
iface = gr.Interface(fn=prompt_to_layout, inputs=[textbox, creative_slider],
outputs=[generated],
css=custom_css,
theme="default",
allow_flagging=False,
allow_screenshot=False,
thumbnail="thumbnail_gradio.PNG")
iface.launch() |