Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import numpy as np | |
import random | |
import re | |
import textwrap | |
from shapely.geometry.polygon import Polygon | |
import aggdraw | |
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM | |
finetuned = AutoModelForCausalLM.from_pretrained('model') | |
tokenizer = AutoTokenizer.from_pretrained('gpt2') | |
# Utility functions | |
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6, | |
"balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10} | |
architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255], | |
[6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],] | |
regex = re.compile(".*?\((.*?)\)") | |
def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None): | |
image = Image.new("RGB", im_size, color="white") | |
draw = aggdraw.Draw(image) | |
for poly, color, in zip(polygons, colors): | |
#get initial polygon coordinates | |
xy = poly.exterior.xy | |
coords = np.dstack((xy[1], xy[0])).flatten() | |
# draw it on canvas, with the appropriate colors | |
brush = aggdraw.Brush((0, 0, 0), opacity=255) | |
draw.polygon(coords, brush) | |
#get inner polygon coordinates | |
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0) | |
if small_poly.geom_type == 'MultiPolygon': | |
mycoordslist = [list(x.exterior.coords) for x in small_poly] | |
for coord in mycoordslist: | |
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten() | |
brush2 = aggdraw.Brush((0, 0, 0), opacity=255) | |
draw.polygon(coords, brush2) | |
elif poly.geom_type == 'Polygon': | |
#get inner polygon coordinates | |
xy2 = small_poly.exterior.xy | |
coords2 = np.dstack((xy2[1], xy2[0])).flatten() | |
# draw it on canvas, with the appropriate colors | |
brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255) | |
draw.polygon(coords2, brush2) | |
image = Image.frombytes("RGB", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM) | |
if(fpath): | |
image.save(fpath, quality=100, subsampling=0) | |
return draw, image | |
def prompt_to_layout(user_prompt, fpath=None): | |
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt) | |
input_ids = tokenizer(model_prompt, return_tensors='pt') | |
output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300) | |
output = tokenizer.batch_decode(output, skip_special_tokens=True) | |
output = output[0].split('[Layout]')[1].split(', ') | |
spaces = [txt.split(':')[0] for txt in output] | |
coordinates = [txt.split(':')[1] for txt in output] | |
coordinates = [re.findall(regex, coord) for coord in coordinates] | |
polygons = [] | |
for coord in coordinates: | |
polygons.append([point.split(',') for point in coord]) | |
geom = [] | |
for poly in polygons: | |
geom.append(Polygon(np.array(poly, dtype=int))) | |
colors = [architext_colors[housegan_labels[space]] for space in spaces] | |
_, im = draw_polygons(geom, colors, fpath=fpath) | |
legend = Image.open("legend.png") | |
im = np.array(im) | |
im[:40, :] = np.array(legend) | |
im = Image.fromarray(im) | |
return im, output | |
def mut_txt2layout(mut_output): | |
output = mut_output[0].split('[Layout]')[1].split(', ') | |
spaces = [txt.split(':')[0].strip(' ') for txt in output] | |
coordinates = [txt.split(':')[1] for txt in output] | |
coordinates = [re.findall(regex, coord) for coord in coordinates] | |
polygons = [] | |
for coord in coordinates: | |
polygons.append([point.split(',') for point in coord]) | |
geom = [] | |
for poly in polygons: | |
geom.append(Polygon(np.array(poly, dtype=int))) | |
colors = [architext_colors[housegan_labels[space]] for space in spaces] | |
_, im = draw_polygons(geom, colors, fpath=None) | |
legend = Image.open("legend.png") | |
im = np.array(im) | |
im[:40, :] = np.array(legend) | |
im = Image.fromarray(im) | |
return im | |
def prompt_with_mutation(user_prompt, fpath=None): | |
#Create initial layout based on prompt | |
im, output = prompt_to_layout(user_prompt) | |
#Create mutated layout based on initial | |
cut_off = np.random.randint(1, 3, size=1)[0] | |
cut_off = min(cut_off, len(output)-1) | |
to_keep = ', '.join(output[:cut_off]) + ', ' | |
new_prompt = '[User prompt] {} [Layout] {}'.format(user_prompt, to_keep) | |
input_ids = tokenizer(new_prompt, return_tensors='pt') | |
mut_output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300) | |
mut_output = tokenizer.batch_decode(mut_output, skip_special_tokens=True) | |
mut_im = mut_txt2layout(mut_output) | |
return im, mut_im, output, mut_output | |
# Gradio App | |
custom_css=""" | |
@import url("https://use.typekit.net/nid3pfr.css"); | |
.gradio_page { | |
display: flex; | |
width: 100vw; | |
min-height: 100vh; | |
flex-direction: column; | |
justify-content: center; | |
align-items: center; | |
margin: 0px; | |
max-width: 100vw; | |
background: #FFFFFF; | |
} | |
.gradio_interface { | |
width: 100vw; | |
max-width: 1500px; | |
} | |
.gradio_interface[theme=default] .panel_buttons { | |
justify-content: flex-end; | |
} | |
.gradio_interface[theme=default] .panel_button { | |
flex: 0 0 0; | |
min-width: 150px; | |
} | |
.gradio_interface[theme=default] .panel_button.submit { | |
background: #11213A; | |
border-radius: 5px; | |
color: #FFFFFF; | |
text-transform: uppercase; | |
min-width: 150px; | |
height: 4em; | |
letter-spacing: 0.15em; | |
flex: 0 0 0; | |
} | |
.gradio_interface[theme=default] .panel_button.submit:hover { | |
background: #000000; | |
} | |
.input_text { | |
font: 200 50px garamond-premier-pro-display, serif; | |
line-height: 115%; | |
color: #11213A; | |
border-radius: 0px; | |
border: 3px solid #11213A; | |
} | |
.input_text:focus { | |
border-color: #FA7880; | |
} | |
.gradio_interface[theme=default] .input_text input, | |
.gradio_interface[theme=default] .input_text textarea { | |
padding: 30px; | |
} | |
.input_text textarea:focus-visible { | |
outline: none; | |
} | |
.panel:nth-child(1) { | |
margin-left: 50px; | |
margin-right: 50px; | |
margin-top: 80px; | |
margin-bottom: 80px; | |
max-width: 750px; | |
} | |
.panel:nth-child(2) { | |
background: #D3ECF5; | |
} | |
.gradio_interface[theme=default] .output_image .image_preview_holder { | |
background: #D3ECF5; | |
} | |
.gradio_interface[theme=default] .component_set { | |
background: transparent; | |
opacity: 1 !important; | |
}""" | |
def gen_and_mutate(user_prompt, mutate=False): | |
if(mutate): | |
im, mut_im = None, None | |
while (mut_im is None): | |
im, mut_im, output, mut_output = prompt_with_mutation(user_prompt) | |
else: | |
mut_im=Image.open("empty.png") | |
im, _ = prompt_to_layout(user_prompt) | |
return im, mut_im | |
checkbox = gr.inputs.Checkbox(label='Mutate') | |
textbox = gr.inputs.Textbox(placeholder='Enter a prompt describing a layout, see below for instructions') | |
generated = gr.outputs.Image(label='Generated Layout') | |
mutated = gr.outputs.Image(label='Mutated Layout') | |
iface = gr.Interface(fn=gen_and_mutate, inputs=[textbox, checkbox], outputs=[generated, mutated], | |
css=custom_css, | |
thumbnail="thumbnail_gradio.PNG", | |
description='Demo of Semantic Generation of Residential Layouts \n', | |
article='''<div> | |
<p> This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:</p> | |
<ul> | |
<li> <strong>typology</strong>: "a house with two bedrooms and two bathrooms"</li> | |
<li> <strong>enumeration</strong>: "a house with five rooms"</li> | |
<li> <strong>adjacency</strong>: "the kitchen is adjacent to a bedroom", "the living room is not adjacent to the bathroom"</li> | |
<li> <strong>location</strong>: "a house with a bedroom in the north east side"</li> | |
</ul> | |
<p>You can also create a mutation of the generated layout by enabling the 'Mutate' option.</p> | |
<p> Made by: <a href='https://www.linkedin.com/in/theodorosgalanos/'>Theodoros </a> <a href='https://twitter.com/TheodoreGalanos'> Galanos</a> and <a href='https://twitter.com/tylerlastovich'>Tyler Lastovich</a> </p> | |
</div>''') | |
iface.launch() | |