Spaces:
Running
Running
import asyncio | |
import inspect | |
import json | |
import logging | |
import mimetypes | |
import os | |
import shutil | |
import sys | |
import time | |
import random | |
from contextlib import asynccontextmanager | |
from typing import Optional | |
from aiocache import cached | |
import aiohttp | |
import requests | |
from fastapi import ( | |
Depends, | |
FastAPI, | |
File, | |
Form, | |
HTTPException, | |
Request, | |
UploadFile, | |
status, | |
) | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse, RedirectResponse | |
from fastapi.staticfiles import StaticFiles | |
from pydantic import BaseModel | |
from sqlalchemy import text | |
from starlette.exceptions import HTTPException as StarletteHTTPException | |
from starlette.middleware.base import BaseHTTPMiddleware | |
from starlette.middleware.sessions import SessionMiddleware | |
from starlette.responses import Response, StreamingResponse | |
from open_webui.apps.audio.main import app as audio_app | |
from open_webui.apps.images.main import app as images_app | |
from open_webui.apps.ollama.main import ( | |
app as ollama_app, | |
get_all_models as get_ollama_models, | |
generate_chat_completion as generate_ollama_chat_completion, | |
GenerateChatCompletionForm, | |
) | |
from open_webui.apps.openai.main import ( | |
app as openai_app, | |
generate_chat_completion as generate_openai_chat_completion, | |
get_all_models as get_openai_models, | |
get_all_models_responses as get_openai_models_responses, | |
) | |
from open_webui.apps.retrieval.main import app as retrieval_app | |
from open_webui.apps.retrieval.utils import get_sources_from_files | |
from open_webui.apps.socket.main import ( | |
app as socket_app, | |
periodic_usage_pool_cleanup, | |
get_event_call, | |
get_event_emitter, | |
) | |
from open_webui.apps.webui.internal.db import Session | |
from open_webui.apps.webui.main import ( | |
app as webui_app, | |
generate_function_chat_completion, | |
get_all_models as get_open_webui_models, | |
) | |
from open_webui.apps.webui.models.functions import Functions | |
from open_webui.apps.webui.models.models import Models | |
from open_webui.apps.webui.models.users import UserModel, Users | |
from open_webui.apps.webui.utils import load_function_module_by_id | |
from open_webui.config import ( | |
CACHE_DIR, | |
CORS_ALLOW_ORIGIN, | |
DEFAULT_LOCALE, | |
ENABLE_ADMIN_CHAT_ACCESS, | |
ENABLE_ADMIN_EXPORT, | |
ENABLE_OLLAMA_API, | |
ENABLE_OPENAI_API, | |
ENABLE_TAGS_GENERATION, | |
ENV, | |
FRONTEND_BUILD_DIR, | |
OAUTH_PROVIDERS, | |
STATIC_DIR, | |
TASK_MODEL, | |
TASK_MODEL_EXTERNAL, | |
ENABLE_SEARCH_QUERY_GENERATION, | |
ENABLE_RETRIEVAL_QUERY_GENERATION, | |
QUERY_GENERATION_PROMPT_TEMPLATE, | |
DEFAULT_QUERY_GENERATION_PROMPT_TEMPLATE, | |
TITLE_GENERATION_PROMPT_TEMPLATE, | |
TAGS_GENERATION_PROMPT_TEMPLATE, | |
ENABLE_AUTOCOMPLETE_GENERATION, | |
AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH, | |
AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE, | |
DEFAULT_AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE, | |
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, | |
WEBHOOK_URL, | |
WEBUI_AUTH, | |
WEBUI_NAME, | |
AppConfig, | |
reset_config, | |
) | |
from open_webui.constants import TASKS | |
from open_webui.env import ( | |
CHANGELOG, | |
GLOBAL_LOG_LEVEL, | |
SAFE_MODE, | |
SRC_LOG_LEVELS, | |
VERSION, | |
WEBUI_BUILD_HASH, | |
WEBUI_SECRET_KEY, | |
WEBUI_SESSION_COOKIE_SAME_SITE, | |
WEBUI_SESSION_COOKIE_SECURE, | |
WEBUI_URL, | |
RESET_CONFIG_ON_START, | |
OFFLINE_MODE, | |
) | |
from open_webui.utils.misc import ( | |
add_or_update_system_message, | |
get_last_user_message, | |
prepend_to_first_user_message_content, | |
) | |
from open_webui.utils.oauth import oauth_manager | |
from open_webui.utils.payload import convert_payload_openai_to_ollama | |
from open_webui.utils.response import ( | |
convert_response_ollama_to_openai, | |
convert_streaming_response_ollama_to_openai, | |
) | |
from open_webui.utils.security_headers import SecurityHeadersMiddleware | |
from open_webui.utils.task import ( | |
rag_template, | |
title_generation_template, | |
query_generation_template, | |
autocomplete_generation_template, | |
tags_generation_template, | |
emoji_generation_template, | |
moa_response_generation_template, | |
tools_function_calling_generation_template, | |
) | |
from open_webui.utils.tools import get_tools | |
from open_webui.utils.utils import ( | |
decode_token, | |
get_admin_user, | |
get_current_user, | |
get_http_authorization_cred, | |
get_verified_user, | |
) | |
from open_webui.utils.access_control import has_access | |
if SAFE_MODE: | |
print("SAFE MODE ENABLED") | |
Functions.deactivate_all_functions() | |
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["MAIN"]) | |
class SPAStaticFiles(StaticFiles): | |
async def get_response(self, path: str, scope): | |
try: | |
return await super().get_response(path, scope) | |
except (HTTPException, StarletteHTTPException) as ex: | |
if ex.status_code == 404: | |
return await super().get_response("index.html", scope) | |
else: | |
raise ex | |
print( | |
rf""" | |
___ __ __ _ _ _ ___ | |
/ _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _| | |
| | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || | | |
| |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || | | |
\___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___| | |
|_| | |
v{VERSION} - building the best open-source AI user interface. | |
{f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""} | |
https://github.com/open-webui/open-webui | |
""" | |
) | |
async def lifespan(app: FastAPI): | |
if RESET_CONFIG_ON_START: | |
reset_config() | |
asyncio.create_task(periodic_usage_pool_cleanup()) | |
yield | |
app = FastAPI( | |
docs_url="/docs" if ENV == "dev" else None, | |
openapi_url="/openapi.json" if ENV == "dev" else None, | |
redoc_url=None, | |
lifespan=lifespan, | |
) | |
app.state.config = AppConfig() | |
app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API | |
app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API | |
app.state.config.WEBHOOK_URL = WEBHOOK_URL | |
app.state.config.TASK_MODEL = TASK_MODEL | |
app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL | |
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE | |
app.state.config.ENABLE_AUTOCOMPLETE_GENERATION = ENABLE_AUTOCOMPLETE_GENERATION | |
app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH = ( | |
AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH | |
) | |
app.state.config.ENABLE_TAGS_GENERATION = ENABLE_TAGS_GENERATION | |
app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE = TAGS_GENERATION_PROMPT_TEMPLATE | |
app.state.config.ENABLE_SEARCH_QUERY_GENERATION = ENABLE_SEARCH_QUERY_GENERATION | |
app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION = ENABLE_RETRIEVAL_QUERY_GENERATION | |
app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE = QUERY_GENERATION_PROMPT_TEMPLATE | |
app.state.config.AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE = ( | |
AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = ( | |
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE | |
) | |
################################## | |
# | |
# ChatCompletion Middleware | |
# | |
################################## | |
def get_filter_function_ids(model): | |
def get_priority(function_id): | |
function = Functions.get_function_by_id(function_id) | |
if function is not None and hasattr(function, "valves"): | |
# TODO: Fix FunctionModel | |
return (function.valves if function.valves else {}).get("priority", 0) | |
return 0 | |
filter_ids = [function.id for function in Functions.get_global_filter_functions()] | |
if "info" in model and "meta" in model["info"]: | |
filter_ids.extend(model["info"]["meta"].get("filterIds", [])) | |
filter_ids = list(set(filter_ids)) | |
enabled_filter_ids = [ | |
function.id | |
for function in Functions.get_functions_by_type("filter", active_only=True) | |
] | |
filter_ids = [ | |
filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids | |
] | |
filter_ids.sort(key=get_priority) | |
return filter_ids | |
async def chat_completion_filter_functions_handler(body, model, extra_params): | |
skip_files = None | |
filter_ids = get_filter_function_ids(model) | |
for filter_id in filter_ids: | |
filter = Functions.get_function_by_id(filter_id) | |
if not filter: | |
continue | |
if filter_id in webui_app.state.FUNCTIONS: | |
function_module = webui_app.state.FUNCTIONS[filter_id] | |
else: | |
function_module, _, _ = load_function_module_by_id(filter_id) | |
webui_app.state.FUNCTIONS[filter_id] = function_module | |
# Check if the function has a file_handler variable | |
if hasattr(function_module, "file_handler"): | |
skip_files = function_module.file_handler | |
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): | |
valves = Functions.get_function_valves_by_id(filter_id) | |
function_module.valves = function_module.Valves( | |
**(valves if valves else {}) | |
) | |
if not hasattr(function_module, "inlet"): | |
continue | |
try: | |
inlet = function_module.inlet | |
# Get the signature of the function | |
sig = inspect.signature(inlet) | |
params = {"body": body} | { | |
k: v | |
for k, v in { | |
**extra_params, | |
"__model__": model, | |
"__id__": filter_id, | |
}.items() | |
if k in sig.parameters | |
} | |
if "__user__" in params and hasattr(function_module, "UserValves"): | |
try: | |
params["__user__"]["valves"] = function_module.UserValves( | |
**Functions.get_user_valves_by_id_and_user_id( | |
filter_id, params["__user__"]["id"] | |
) | |
) | |
except Exception as e: | |
print(e) | |
if inspect.iscoroutinefunction(inlet): | |
body = await inlet(**params) | |
else: | |
body = inlet(**params) | |
except Exception as e: | |
print(f"Error: {e}") | |
raise e | |
if skip_files and "files" in body.get("metadata", {}): | |
del body["metadata"]["files"] | |
return body, {} | |
def get_tools_function_calling_payload(messages, task_model_id, content): | |
user_message = get_last_user_message(messages) | |
history = "\n".join( | |
f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\"" | |
for message in messages[::-1][:4] | |
) | |
prompt = f"History:\n{history}\nQuery: {user_message}" | |
return { | |
"model": task_model_id, | |
"messages": [ | |
{"role": "system", "content": content}, | |
{"role": "user", "content": f"Query: {prompt}"}, | |
], | |
"stream": False, | |
"metadata": {"task": str(TASKS.FUNCTION_CALLING)}, | |
} | |
async def get_content_from_response(response) -> Optional[str]: | |
content = None | |
if hasattr(response, "body_iterator"): | |
async for chunk in response.body_iterator: | |
data = json.loads(chunk.decode("utf-8")) | |
content = data["choices"][0]["message"]["content"] | |
# Cleanup any remaining background tasks if necessary | |
if response.background is not None: | |
await response.background() | |
else: | |
content = response["choices"][0]["message"]["content"] | |
return content | |
def get_task_model_id( | |
default_model_id: str, task_model: str, task_model_external: str, models | |
) -> str: | |
# Set the task model | |
task_model_id = default_model_id | |
# Check if the user has a custom task model and use that model | |
if models[task_model_id]["owned_by"] == "ollama": | |
if task_model and task_model in models: | |
task_model_id = task_model | |
else: | |
if task_model_external and task_model_external in models: | |
task_model_id = task_model_external | |
return task_model_id | |
async def chat_completion_tools_handler( | |
body: dict, user: UserModel, models, extra_params: dict | |
) -> tuple[dict, dict]: | |
# If tool_ids field is present, call the functions | |
metadata = body.get("metadata", {}) | |
tool_ids = metadata.get("tool_ids", None) | |
log.debug(f"{tool_ids=}") | |
if not tool_ids: | |
return body, {} | |
skip_files = False | |
sources = [] | |
task_model_id = get_task_model_id( | |
body["model"], | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
tools = get_tools( | |
webui_app, | |
tool_ids, | |
user, | |
{ | |
**extra_params, | |
"__model__": models[task_model_id], | |
"__messages__": body["messages"], | |
"__files__": metadata.get("files", []), | |
}, | |
) | |
log.info(f"{tools=}") | |
specs = [tool["spec"] for tool in tools.values()] | |
tools_specs = json.dumps(specs) | |
if app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE != "": | |
template = app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE | |
else: | |
template = """Available Tools: {{TOOLS}}\nReturn an empty string if no tools match the query. If a function tool matches, construct and return a JSON object in the format {\"name\": \"functionName\", \"parameters\": {\"requiredFunctionParamKey\": \"requiredFunctionParamValue\"}} using the appropriate tool and its parameters. Only return the object and limit the response to the JSON object without additional text.""" | |
tools_function_calling_prompt = tools_function_calling_generation_template( | |
template, tools_specs | |
) | |
log.info(f"{tools_function_calling_prompt=}") | |
payload = get_tools_function_calling_payload( | |
body["messages"], task_model_id, tools_function_calling_prompt | |
) | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
raise e | |
try: | |
response = await generate_chat_completions(form_data=payload, user=user) | |
log.debug(f"{response=}") | |
content = await get_content_from_response(response) | |
log.debug(f"{content=}") | |
if not content: | |
return body, {} | |
try: | |
content = content[content.find("{") : content.rfind("}") + 1] | |
if not content: | |
raise Exception("No JSON object found in the response") | |
result = json.loads(content) | |
tool_function_name = result.get("name", None) | |
if tool_function_name not in tools: | |
return body, {} | |
tool_function_params = result.get("parameters", {}) | |
try: | |
required_params = ( | |
tools[tool_function_name] | |
.get("spec", {}) | |
.get("parameters", {}) | |
.get("required", []) | |
) | |
tool_function = tools[tool_function_name]["callable"] | |
tool_function_params = { | |
k: v | |
for k, v in tool_function_params.items() | |
if k in required_params | |
} | |
tool_output = await tool_function(**tool_function_params) | |
except Exception as e: | |
tool_output = str(e) | |
print(tools[tool_function_name]["citation"]) | |
if isinstance(tool_output, str): | |
if tools[tool_function_name]["citation"]: | |
sources.append( | |
{ | |
"source": { | |
"name": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" | |
}, | |
"document": [tool_output], | |
"metadata": [ | |
{ | |
"source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" | |
} | |
], | |
} | |
) | |
else: | |
sources.append( | |
{ | |
"source": {}, | |
"document": [tool_output], | |
"metadata": [ | |
{ | |
"source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" | |
} | |
], | |
} | |
) | |
if tools[tool_function_name]["file_handler"]: | |
skip_files = True | |
except Exception as e: | |
log.exception(f"Error: {e}") | |
content = None | |
except Exception as e: | |
log.exception(f"Error: {e}") | |
content = None | |
log.debug(f"tool_contexts: {sources}") | |
if skip_files and "files" in body.get("metadata", {}): | |
del body["metadata"]["files"] | |
return body, {"sources": sources} | |
async def chat_completion_files_handler( | |
body: dict, user: UserModel | |
) -> tuple[dict, dict[str, list]]: | |
sources = [] | |
if files := body.get("metadata", {}).get("files", None): | |
try: | |
queries_response = await generate_queries( | |
{ | |
"model": body["model"], | |
"messages": body["messages"], | |
"type": "retrieval", | |
}, | |
user, | |
) | |
queries_response = queries_response["choices"][0]["message"]["content"] | |
try: | |
bracket_start = queries_response.find("{") | |
bracket_end = queries_response.rfind("}") + 1 | |
if bracket_start == -1 or bracket_end == -1: | |
raise Exception("No JSON object found in the response") | |
queries_response = queries_response[bracket_start:bracket_end] | |
queries_response = json.loads(queries_response) | |
except Exception as e: | |
queries_response = {"queries": [queries_response]} | |
queries = queries_response.get("queries", []) | |
except Exception as e: | |
queries = [] | |
if len(queries) == 0: | |
queries = [get_last_user_message(body["messages"])] | |
sources = get_sources_from_files( | |
files=files, | |
queries=queries, | |
embedding_function=retrieval_app.state.EMBEDDING_FUNCTION, | |
k=retrieval_app.state.config.TOP_K, | |
reranking_function=retrieval_app.state.sentence_transformer_rf, | |
r=retrieval_app.state.config.RELEVANCE_THRESHOLD, | |
hybrid_search=retrieval_app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
) | |
log.debug(f"rag_contexts:sources: {sources}") | |
return body, {"sources": sources} | |
def is_chat_completion_request(request): | |
return request.method == "POST" and any( | |
endpoint in request.url.path | |
for endpoint in ["/ollama/api/chat", "/chat/completions"] | |
) | |
async def get_body_and_model_and_user(request, models): | |
# Read the original request body | |
body = await request.body() | |
body_str = body.decode("utf-8") | |
body = json.loads(body_str) if body_str else {} | |
model_id = body["model"] | |
if model_id not in models: | |
raise Exception("Model not found") | |
model = models[model_id] | |
user = get_current_user( | |
request, | |
get_http_authorization_cred(request.headers.get("Authorization")), | |
) | |
return body, model, user | |
class ChatCompletionMiddleware(BaseHTTPMiddleware): | |
async def dispatch(self, request: Request, call_next): | |
if not is_chat_completion_request(request): | |
return await call_next(request) | |
log.debug(f"request.url.path: {request.url.path}") | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
try: | |
body, model, user = await get_body_and_model_and_user(request, models) | |
except Exception as e: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
model_info = Models.get_model_by_id(model["id"]) | |
if user.role == "user": | |
if model.get("arena"): | |
if not has_access( | |
user.id, | |
type="read", | |
access_control=model.get("info", {}) | |
.get("meta", {}) | |
.get("access_control", {}), | |
): | |
raise HTTPException( | |
status_code=403, | |
detail="Model not found", | |
) | |
else: | |
if not model_info: | |
return JSONResponse( | |
status_code=status.HTTP_404_NOT_FOUND, | |
content={"detail": "Model not found"}, | |
) | |
elif not ( | |
user.id == model_info.user_id | |
or has_access( | |
user.id, type="read", access_control=model_info.access_control | |
) | |
): | |
return JSONResponse( | |
status_code=status.HTTP_403_FORBIDDEN, | |
content={"detail": "User does not have access to the model"}, | |
) | |
metadata = { | |
"chat_id": body.pop("chat_id", None), | |
"message_id": body.pop("id", None), | |
"session_id": body.pop("session_id", None), | |
"tool_ids": body.get("tool_ids", None), | |
"files": body.get("files", None), | |
} | |
body["metadata"] = metadata | |
extra_params = { | |
"__event_emitter__": get_event_emitter(metadata), | |
"__event_call__": get_event_call(metadata), | |
"__user__": { | |
"id": user.id, | |
"email": user.email, | |
"name": user.name, | |
"role": user.role, | |
}, | |
"__metadata__": metadata, | |
} | |
# Initialize data_items to store additional data to be sent to the client | |
# Initialize contexts and citation | |
data_items = [] | |
sources = [] | |
try: | |
body, flags = await chat_completion_filter_functions_handler( | |
body, model, extra_params | |
) | |
except Exception as e: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
tool_ids = body.pop("tool_ids", None) | |
files = body.pop("files", None) | |
metadata = { | |
**metadata, | |
"tool_ids": tool_ids, | |
"files": files, | |
} | |
body["metadata"] = metadata | |
try: | |
body, flags = await chat_completion_tools_handler( | |
body, user, models, extra_params | |
) | |
sources.extend(flags.get("sources", [])) | |
except Exception as e: | |
log.exception(e) | |
try: | |
body, flags = await chat_completion_files_handler(body, user) | |
sources.extend(flags.get("sources", [])) | |
except Exception as e: | |
log.exception(e) | |
# If context is not empty, insert it into the messages | |
if len(sources) > 0: | |
context_string = "" | |
for source_idx, source in enumerate(sources): | |
source_id = source.get("source", {}).get("name", "") | |
if "document" in source: | |
for doc_idx, doc_context in enumerate(source["document"]): | |
metadata = source.get("metadata") | |
doc_source_id = None | |
if metadata: | |
doc_source_id = metadata[doc_idx].get("source", source_id) | |
if source_id: | |
context_string += f"<source><source_id>{doc_source_id if doc_source_id is not None else source_id}</source_id><source_context>{doc_context}</source_context></source>\n" | |
else: | |
# If there is no source_id, then do not include the source_id tag | |
context_string += f"<source><source_context>{doc_context}</source_context></source>\n" | |
context_string = context_string.strip() | |
prompt = get_last_user_message(body["messages"]) | |
if prompt is None: | |
raise Exception("No user message found") | |
if ( | |
retrieval_app.state.config.RELEVANCE_THRESHOLD == 0 | |
and context_string.strip() == "" | |
): | |
log.debug( | |
f"With a 0 relevancy threshold for RAG, the context cannot be empty" | |
) | |
# Workaround for Ollama 2.0+ system prompt issue | |
# TODO: replace with add_or_update_system_message | |
if model["owned_by"] == "ollama": | |
body["messages"] = prepend_to_first_user_message_content( | |
rag_template( | |
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt | |
), | |
body["messages"], | |
) | |
else: | |
body["messages"] = add_or_update_system_message( | |
rag_template( | |
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt | |
), | |
body["messages"], | |
) | |
# If there are citations, add them to the data_items | |
sources = [ | |
source for source in sources if source.get("source", {}).get("name", "") | |
] | |
if len(sources) > 0: | |
data_items.append({"sources": sources}) | |
modified_body_bytes = json.dumps(body).encode("utf-8") | |
# Replace the request body with the modified one | |
request._body = modified_body_bytes | |
# Set custom header to ensure content-length matches new body length | |
request.headers.__dict__["_list"] = [ | |
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")), | |
*[(k, v) for k, v in request.headers.raw if k.lower() != b"content-length"], | |
] | |
response = await call_next(request) | |
if not isinstance(response, StreamingResponse): | |
return response | |
content_type = response.headers["Content-Type"] | |
is_openai = "text/event-stream" in content_type | |
is_ollama = "application/x-ndjson" in content_type | |
if not is_openai and not is_ollama: | |
return response | |
def wrap_item(item): | |
return f"data: {item}\n\n" if is_openai else f"{item}\n" | |
async def stream_wrapper(original_generator, data_items): | |
for item in data_items: | |
yield wrap_item(json.dumps(item)) | |
async for data in original_generator: | |
yield data | |
return StreamingResponse( | |
stream_wrapper(response.body_iterator, data_items), | |
headers=dict(response.headers), | |
) | |
async def _receive(self, body: bytes): | |
return {"type": "http.request", "body": body, "more_body": False} | |
app.add_middleware(ChatCompletionMiddleware) | |
################################## | |
# | |
# Pipeline Middleware | |
# | |
################################## | |
def get_sorted_filters(model_id, models): | |
filters = [ | |
model | |
for model in models.values() | |
if "pipeline" in model | |
and "type" in model["pipeline"] | |
and model["pipeline"]["type"] == "filter" | |
and ( | |
model["pipeline"]["pipelines"] == ["*"] | |
or any( | |
model_id == target_model_id | |
for target_model_id in model["pipeline"]["pipelines"] | |
) | |
) | |
] | |
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) | |
return sorted_filters | |
def filter_pipeline(payload, user, models): | |
user = {"id": user.id, "email": user.email, "name": user.name, "role": user.role} | |
model_id = payload["model"] | |
sorted_filters = get_sorted_filters(model_id, models) | |
model = models[model_id] | |
if "pipeline" in model: | |
sorted_filters.append(model) | |
for filter in sorted_filters: | |
r = None | |
try: | |
urlIdx = filter["urlIdx"] | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
if key == "": | |
continue | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/{filter['id']}/filter/inlet", | |
headers=headers, | |
json={ | |
"user": user, | |
"body": payload, | |
}, | |
) | |
r.raise_for_status() | |
payload = r.json() | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
if r is not None: | |
res = r.json() | |
if "detail" in res: | |
raise Exception(r.status_code, res["detail"]) | |
return payload | |
class PipelineMiddleware(BaseHTTPMiddleware): | |
async def dispatch(self, request: Request, call_next): | |
if not is_chat_completion_request(request): | |
return await call_next(request) | |
log.debug(f"request.url.path: {request.url.path}") | |
# Read the original request body | |
body = await request.body() | |
# Decode body to string | |
body_str = body.decode("utf-8") | |
# Parse string to JSON | |
data = json.loads(body_str) if body_str else {} | |
try: | |
user = get_current_user( | |
request, | |
get_http_authorization_cred(request.headers["Authorization"]), | |
) | |
except KeyError as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
content={"detail": "Not authenticated"}, | |
) | |
except HTTPException as e: | |
return JSONResponse( | |
status_code=e.status_code, | |
content={"detail": e.detail}, | |
) | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
try: | |
data = filter_pipeline(data, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
modified_body_bytes = json.dumps(data).encode("utf-8") | |
# Replace the request body with the modified one | |
request._body = modified_body_bytes | |
# Set custom header to ensure content-length matches new body length | |
request.headers.__dict__["_list"] = [ | |
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")), | |
*[(k, v) for k, v in request.headers.raw if k.lower() != b"content-length"], | |
] | |
response = await call_next(request) | |
return response | |
async def _receive(self, body: bytes): | |
return {"type": "http.request", "body": body, "more_body": False} | |
app.add_middleware(PipelineMiddleware) | |
from urllib.parse import urlencode, parse_qs, urlparse | |
class RedirectMiddleware(BaseHTTPMiddleware): | |
async def dispatch(self, request: Request, call_next): | |
# Check if the request is a GET request | |
if request.method == "GET": | |
path = request.url.path | |
query_params = dict(parse_qs(urlparse(str(request.url)).query)) | |
# Check for the specific watch path and the presence of 'v' parameter | |
if path.endswith("/watch") and "v" in query_params: | |
video_id = query_params["v"][0] # Extract the first 'v' parameter | |
encoded_video_id = urlencode({"youtube": video_id}) | |
redirect_url = f"/?{encoded_video_id}" | |
return RedirectResponse(url=redirect_url) | |
# Proceed with the normal flow of other requests | |
response = await call_next(request) | |
return response | |
# Add the middleware to the app | |
app.add_middleware(RedirectMiddleware) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=CORS_ALLOW_ORIGIN, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
app.add_middleware(SecurityHeadersMiddleware) | |
async def commit_session_after_request(request: Request, call_next): | |
response = await call_next(request) | |
# log.debug("Commit session after request") | |
Session.commit() | |
return response | |
async def check_url(request: Request, call_next): | |
start_time = int(time.time()) | |
request.state.enable_api_key = webui_app.state.config.ENABLE_API_KEY | |
response = await call_next(request) | |
process_time = int(time.time()) - start_time | |
response.headers["X-Process-Time"] = str(process_time) | |
return response | |
async def update_embedding_function(request: Request, call_next): | |
response = await call_next(request) | |
if "/embedding/update" in request.url.path: | |
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION | |
return response | |
async def inspect_websocket(request: Request, call_next): | |
if ( | |
"/ws/socket.io" in request.url.path | |
and request.query_params.get("transport") == "websocket" | |
): | |
upgrade = (request.headers.get("Upgrade") or "").lower() | |
connection = (request.headers.get("Connection") or "").lower().split(",") | |
# Check that there's the correct headers for an upgrade, else reject the connection | |
# This is to work around this upstream issue: https://github.com/miguelgrinberg/python-engineio/issues/367 | |
if upgrade != "websocket" or "upgrade" not in connection: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": "Invalid WebSocket upgrade request"}, | |
) | |
return await call_next(request) | |
app.mount("/ws", socket_app) | |
app.mount("/ollama", ollama_app) | |
app.mount("/openai", openai_app) | |
app.mount("/images/api/v1", images_app) | |
app.mount("/audio/api/v1", audio_app) | |
app.mount("/retrieval/api/v1", retrieval_app) | |
app.mount("/api/v1", webui_app) | |
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION | |
async def get_all_base_models(): | |
open_webui_models = [] | |
openai_models = [] | |
ollama_models = [] | |
if app.state.config.ENABLE_OPENAI_API: | |
openai_models = await get_openai_models() | |
openai_models = openai_models["data"] | |
if app.state.config.ENABLE_OLLAMA_API: | |
ollama_models = await get_ollama_models() | |
ollama_models = [ | |
{ | |
"id": model["model"], | |
"name": model["name"], | |
"object": "model", | |
"created": int(time.time()), | |
"owned_by": "ollama", | |
"ollama": model, | |
} | |
for model in ollama_models["models"] | |
] | |
open_webui_models = await get_open_webui_models() | |
models = open_webui_models + openai_models + ollama_models | |
return models | |
async def get_all_models(): | |
models = await get_all_base_models() | |
# If there are no models, return an empty list | |
if len([model for model in models if not model.get("arena", False)]) == 0: | |
return [] | |
global_action_ids = [ | |
function.id for function in Functions.get_global_action_functions() | |
] | |
enabled_action_ids = [ | |
function.id | |
for function in Functions.get_functions_by_type("action", active_only=True) | |
] | |
custom_models = Models.get_all_models() | |
for custom_model in custom_models: | |
if custom_model.base_model_id is None: | |
for model in models: | |
if ( | |
custom_model.id == model["id"] | |
or custom_model.id == model["id"].split(":")[0] | |
): | |
if custom_model.is_active: | |
model["name"] = custom_model.name | |
model["info"] = custom_model.model_dump() | |
action_ids = [] | |
if "info" in model and "meta" in model["info"]: | |
action_ids.extend( | |
model["info"]["meta"].get("actionIds", []) | |
) | |
model["action_ids"] = action_ids | |
else: | |
models.remove(model) | |
elif custom_model.is_active and ( | |
custom_model.id not in [model["id"] for model in models] | |
): | |
owned_by = "openai" | |
pipe = None | |
action_ids = [] | |
for model in models: | |
if ( | |
custom_model.base_model_id == model["id"] | |
or custom_model.base_model_id == model["id"].split(":")[0] | |
): | |
owned_by = model["owned_by"] | |
if "pipe" in model: | |
pipe = model["pipe"] | |
break | |
if custom_model.meta: | |
meta = custom_model.meta.model_dump() | |
if "actionIds" in meta: | |
action_ids.extend(meta["actionIds"]) | |
models.append( | |
{ | |
"id": f"{custom_model.id}", | |
"name": custom_model.name, | |
"object": "model", | |
"created": custom_model.created_at, | |
"owned_by": owned_by, | |
"info": custom_model.model_dump(), | |
"preset": True, | |
**({"pipe": pipe} if pipe is not None else {}), | |
"action_ids": action_ids, | |
} | |
) | |
# Process action_ids to get the actions | |
def get_action_items_from_module(function, module): | |
actions = [] | |
if hasattr(module, "actions"): | |
actions = module.actions | |
return [ | |
{ | |
"id": f"{function.id}.{action['id']}", | |
"name": action.get("name", f"{function.name} ({action['id']})"), | |
"description": function.meta.description, | |
"icon_url": action.get( | |
"icon_url", function.meta.manifest.get("icon_url", None) | |
), | |
} | |
for action in actions | |
] | |
else: | |
return [ | |
{ | |
"id": function.id, | |
"name": function.name, | |
"description": function.meta.description, | |
"icon_url": function.meta.manifest.get("icon_url", None), | |
} | |
] | |
def get_function_module_by_id(function_id): | |
if function_id in webui_app.state.FUNCTIONS: | |
function_module = webui_app.state.FUNCTIONS[function_id] | |
else: | |
function_module, _, _ = load_function_module_by_id(function_id) | |
webui_app.state.FUNCTIONS[function_id] = function_module | |
for model in models: | |
action_ids = [ | |
action_id | |
for action_id in list(set(model.pop("action_ids", []) + global_action_ids)) | |
if action_id in enabled_action_ids | |
] | |
model["actions"] = [] | |
for action_id in action_ids: | |
action_function = Functions.get_function_by_id(action_id) | |
if action_function is None: | |
raise Exception(f"Action not found: {action_id}") | |
function_module = get_function_module_by_id(action_id) | |
model["actions"].extend( | |
get_action_items_from_module(action_function, function_module) | |
) | |
log.debug(f"get_all_models() returned {len(models)} models") | |
return models | |
async def get_models(user=Depends(get_verified_user)): | |
models = await get_all_models() | |
# Filter out filter pipelines | |
models = [ | |
model | |
for model in models | |
if "pipeline" not in model or model["pipeline"].get("type", None) != "filter" | |
] | |
model_order_list = webui_app.state.config.MODEL_ORDER_LIST | |
if model_order_list: | |
model_order_dict = {model_id: i for i, model_id in enumerate(model_order_list)} | |
# Sort models by order list priority, with fallback for those not in the list | |
models.sort( | |
key=lambda x: (model_order_dict.get(x["id"], float("inf")), x["name"]) | |
) | |
# Filter out models that the user does not have access to | |
if user.role == "user": | |
filtered_models = [] | |
for model in models: | |
if model.get("arena"): | |
if has_access( | |
user.id, | |
type="read", | |
access_control=model.get("info", {}) | |
.get("meta", {}) | |
.get("access_control", {}), | |
): | |
filtered_models.append(model) | |
continue | |
model_info = Models.get_model_by_id(model["id"]) | |
if model_info: | |
if user.id == model_info.user_id or has_access( | |
user.id, type="read", access_control=model_info.access_control | |
): | |
filtered_models.append(model) | |
models = filtered_models | |
log.debug( | |
f"/api/models returned filtered models accessible to the user: {json.dumps([model['id'] for model in models])}" | |
) | |
return {"data": models} | |
async def get_base_models(user=Depends(get_admin_user)): | |
models = await get_all_base_models() | |
# Filter out arena models | |
models = [model for model in models if not model.get("arena", False)] | |
return {"data": models} | |
async def generate_chat_completions( | |
form_data: dict, user=Depends(get_verified_user), bypass_filter: bool = False | |
): | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
model = models[model_id] | |
# Check if user has access to the model | |
if not bypass_filter and user.role == "user": | |
if model.get("arena"): | |
if not has_access( | |
user.id, | |
type="read", | |
access_control=model.get("info", {}) | |
.get("meta", {}) | |
.get("access_control", {}), | |
): | |
raise HTTPException( | |
status_code=403, | |
detail="Model not found", | |
) | |
else: | |
model_info = Models.get_model_by_id(model_id) | |
if not model_info: | |
raise HTTPException( | |
status_code=404, | |
detail="Model not found", | |
) | |
elif not ( | |
user.id == model_info.user_id | |
or has_access( | |
user.id, type="read", access_control=model_info.access_control | |
) | |
): | |
raise HTTPException( | |
status_code=403, | |
detail="Model not found", | |
) | |
if model["owned_by"] == "arena": | |
model_ids = model.get("info", {}).get("meta", {}).get("model_ids") | |
filter_mode = model.get("info", {}).get("meta", {}).get("filter_mode") | |
if model_ids and filter_mode == "exclude": | |
model_ids = [ | |
model["id"] | |
for model in await get_all_models() | |
if model.get("owned_by") != "arena" and model["id"] not in model_ids | |
] | |
selected_model_id = None | |
if isinstance(model_ids, list) and model_ids: | |
selected_model_id = random.choice(model_ids) | |
else: | |
model_ids = [ | |
model["id"] | |
for model in await get_all_models() | |
if model.get("owned_by") != "arena" | |
] | |
selected_model_id = random.choice(model_ids) | |
form_data["model"] = selected_model_id | |
if form_data.get("stream") == True: | |
async def stream_wrapper(stream): | |
yield f"data: {json.dumps({'selected_model_id': selected_model_id})}\n\n" | |
async for chunk in stream: | |
yield chunk | |
response = await generate_chat_completions( | |
form_data, user, bypass_filter=True | |
) | |
return StreamingResponse( | |
stream_wrapper(response.body_iterator), media_type="text/event-stream" | |
) | |
else: | |
return { | |
**( | |
await generate_chat_completions(form_data, user, bypass_filter=True) | |
), | |
"selected_model_id": selected_model_id, | |
} | |
if model.get("pipe"): | |
# Below does not require bypass_filter because this is the only route the uses this function and it is already bypassing the filter | |
return await generate_function_chat_completion( | |
form_data, user=user, models=models | |
) | |
if model["owned_by"] == "ollama": | |
# Using /ollama/api/chat endpoint | |
form_data = convert_payload_openai_to_ollama(form_data) | |
form_data = GenerateChatCompletionForm(**form_data) | |
response = await generate_ollama_chat_completion( | |
form_data=form_data, user=user, bypass_filter=bypass_filter | |
) | |
if form_data.stream: | |
response.headers["content-type"] = "text/event-stream" | |
return StreamingResponse( | |
convert_streaming_response_ollama_to_openai(response), | |
headers=dict(response.headers), | |
) | |
else: | |
return convert_response_ollama_to_openai(response) | |
else: | |
return await generate_openai_chat_completion( | |
form_data, user=user, bypass_filter=bypass_filter | |
) | |
async def chat_completed(form_data: dict, user=Depends(get_verified_user)): | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
data = form_data | |
model_id = data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
model = models[model_id] | |
sorted_filters = get_sorted_filters(model_id, models) | |
if "pipeline" in model: | |
sorted_filters = [model] + sorted_filters | |
for filter in sorted_filters: | |
r = None | |
try: | |
urlIdx = filter["urlIdx"] | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
if key != "": | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/{filter['id']}/filter/outlet", | |
headers=headers, | |
json={ | |
"user": { | |
"id": user.id, | |
"name": user.name, | |
"email": user.email, | |
"role": user.role, | |
}, | |
"body": data, | |
}, | |
) | |
r.raise_for_status() | |
data = r.json() | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
return JSONResponse( | |
status_code=r.status_code, | |
content=res, | |
) | |
except Exception: | |
pass | |
else: | |
pass | |
__event_emitter__ = get_event_emitter( | |
{ | |
"chat_id": data["chat_id"], | |
"message_id": data["id"], | |
"session_id": data["session_id"], | |
} | |
) | |
__event_call__ = get_event_call( | |
{ | |
"chat_id": data["chat_id"], | |
"message_id": data["id"], | |
"session_id": data["session_id"], | |
} | |
) | |
def get_priority(function_id): | |
function = Functions.get_function_by_id(function_id) | |
if function is not None and hasattr(function, "valves"): | |
# TODO: Fix FunctionModel to include vavles | |
return (function.valves if function.valves else {}).get("priority", 0) | |
return 0 | |
filter_ids = [function.id for function in Functions.get_global_filter_functions()] | |
if "info" in model and "meta" in model["info"]: | |
filter_ids.extend(model["info"]["meta"].get("filterIds", [])) | |
filter_ids = list(set(filter_ids)) | |
enabled_filter_ids = [ | |
function.id | |
for function in Functions.get_functions_by_type("filter", active_only=True) | |
] | |
filter_ids = [ | |
filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids | |
] | |
# Sort filter_ids by priority, using the get_priority function | |
filter_ids.sort(key=get_priority) | |
for filter_id in filter_ids: | |
filter = Functions.get_function_by_id(filter_id) | |
if not filter: | |
continue | |
if filter_id in webui_app.state.FUNCTIONS: | |
function_module = webui_app.state.FUNCTIONS[filter_id] | |
else: | |
function_module, _, _ = load_function_module_by_id(filter_id) | |
webui_app.state.FUNCTIONS[filter_id] = function_module | |
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): | |
valves = Functions.get_function_valves_by_id(filter_id) | |
function_module.valves = function_module.Valves( | |
**(valves if valves else {}) | |
) | |
if not hasattr(function_module, "outlet"): | |
continue | |
try: | |
outlet = function_module.outlet | |
# Get the signature of the function | |
sig = inspect.signature(outlet) | |
params = {"body": data} | |
# Extra parameters to be passed to the function | |
extra_params = { | |
"__model__": model, | |
"__id__": filter_id, | |
"__event_emitter__": __event_emitter__, | |
"__event_call__": __event_call__, | |
} | |
# Add extra params in contained in function signature | |
for key, value in extra_params.items(): | |
if key in sig.parameters: | |
params[key] = value | |
if "__user__" in sig.parameters: | |
__user__ = { | |
"id": user.id, | |
"email": user.email, | |
"name": user.name, | |
"role": user.role, | |
} | |
try: | |
if hasattr(function_module, "UserValves"): | |
__user__["valves"] = function_module.UserValves( | |
**Functions.get_user_valves_by_id_and_user_id( | |
filter_id, user.id | |
) | |
) | |
except Exception as e: | |
print(e) | |
params = {**params, "__user__": __user__} | |
if inspect.iscoroutinefunction(outlet): | |
data = await outlet(**params) | |
else: | |
data = outlet(**params) | |
except Exception as e: | |
print(f"Error: {e}") | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
return data | |
async def chat_action(action_id: str, form_data: dict, user=Depends(get_verified_user)): | |
if "." in action_id: | |
action_id, sub_action_id = action_id.split(".") | |
else: | |
sub_action_id = None | |
action = Functions.get_function_by_id(action_id) | |
if not action: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Action not found", | |
) | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
data = form_data | |
model_id = data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
model = models[model_id] | |
__event_emitter__ = get_event_emitter( | |
{ | |
"chat_id": data["chat_id"], | |
"message_id": data["id"], | |
"session_id": data["session_id"], | |
} | |
) | |
__event_call__ = get_event_call( | |
{ | |
"chat_id": data["chat_id"], | |
"message_id": data["id"], | |
"session_id": data["session_id"], | |
} | |
) | |
if action_id in webui_app.state.FUNCTIONS: | |
function_module = webui_app.state.FUNCTIONS[action_id] | |
else: | |
function_module, _, _ = load_function_module_by_id(action_id) | |
webui_app.state.FUNCTIONS[action_id] = function_module | |
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): | |
valves = Functions.get_function_valves_by_id(action_id) | |
function_module.valves = function_module.Valves(**(valves if valves else {})) | |
if hasattr(function_module, "action"): | |
try: | |
action = function_module.action | |
# Get the signature of the function | |
sig = inspect.signature(action) | |
params = {"body": data} | |
# Extra parameters to be passed to the function | |
extra_params = { | |
"__model__": model, | |
"__id__": sub_action_id if sub_action_id is not None else action_id, | |
"__event_emitter__": __event_emitter__, | |
"__event_call__": __event_call__, | |
} | |
# Add extra params in contained in function signature | |
for key, value in extra_params.items(): | |
if key in sig.parameters: | |
params[key] = value | |
if "__user__" in sig.parameters: | |
__user__ = { | |
"id": user.id, | |
"email": user.email, | |
"name": user.name, | |
"role": user.role, | |
} | |
try: | |
if hasattr(function_module, "UserValves"): | |
__user__["valves"] = function_module.UserValves( | |
**Functions.get_user_valves_by_id_and_user_id( | |
action_id, user.id | |
) | |
) | |
except Exception as e: | |
print(e) | |
params = {**params, "__user__": __user__} | |
if inspect.iscoroutinefunction(action): | |
data = await action(**params) | |
else: | |
data = action(**params) | |
except Exception as e: | |
print(f"Error: {e}") | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
return data | |
################################## | |
# | |
# Task Endpoints | |
# | |
################################## | |
# TODO: Refactor task API endpoints below into a separate file | |
async def get_task_config(user=Depends(get_verified_user)): | |
return { | |
"TASK_MODEL": app.state.config.TASK_MODEL, | |
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, | |
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, | |
"ENABLE_AUTOCOMPLETE_GENERATION": app.state.config.ENABLE_AUTOCOMPLETE_GENERATION, | |
"AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH": app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH, | |
"TAGS_GENERATION_PROMPT_TEMPLATE": app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE, | |
"ENABLE_TAGS_GENERATION": app.state.config.ENABLE_TAGS_GENERATION, | |
"ENABLE_SEARCH_QUERY_GENERATION": app.state.config.ENABLE_SEARCH_QUERY_GENERATION, | |
"ENABLE_RETRIEVAL_QUERY_GENERATION": app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION, | |
"QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE, | |
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, | |
} | |
class TaskConfigForm(BaseModel): | |
TASK_MODEL: Optional[str] | |
TASK_MODEL_EXTERNAL: Optional[str] | |
TITLE_GENERATION_PROMPT_TEMPLATE: str | |
ENABLE_AUTOCOMPLETE_GENERATION: bool | |
AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH: int | |
TAGS_GENERATION_PROMPT_TEMPLATE: str | |
ENABLE_TAGS_GENERATION: bool | |
ENABLE_SEARCH_QUERY_GENERATION: bool | |
ENABLE_RETRIEVAL_QUERY_GENERATION: bool | |
QUERY_GENERATION_PROMPT_TEMPLATE: str | |
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str | |
async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)): | |
app.state.config.TASK_MODEL = form_data.TASK_MODEL | |
app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL | |
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = ( | |
form_data.TITLE_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.ENABLE_AUTOCOMPLETE_GENERATION = ( | |
form_data.ENABLE_AUTOCOMPLETE_GENERATION | |
) | |
app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH = ( | |
form_data.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH | |
) | |
app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE = ( | |
form_data.TAGS_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.ENABLE_TAGS_GENERATION = form_data.ENABLE_TAGS_GENERATION | |
app.state.config.ENABLE_SEARCH_QUERY_GENERATION = ( | |
form_data.ENABLE_SEARCH_QUERY_GENERATION | |
) | |
app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION = ( | |
form_data.ENABLE_RETRIEVAL_QUERY_GENERATION | |
) | |
app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE = ( | |
form_data.QUERY_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = ( | |
form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE | |
) | |
return { | |
"TASK_MODEL": app.state.config.TASK_MODEL, | |
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, | |
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, | |
"ENABLE_AUTOCOMPLETE_GENERATION": app.state.config.ENABLE_AUTOCOMPLETE_GENERATION, | |
"AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH": app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH, | |
"TAGS_GENERATION_PROMPT_TEMPLATE": app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE, | |
"ENABLE_TAGS_GENERATION": app.state.config.ENABLE_TAGS_GENERATION, | |
"ENABLE_SEARCH_QUERY_GENERATION": app.state.config.ENABLE_SEARCH_QUERY_GENERATION, | |
"ENABLE_RETRIEVAL_QUERY_GENERATION": app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION, | |
"QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE, | |
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, | |
} | |
async def generate_title(form_data: dict, user=Depends(get_verified_user)): | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
task_model_id = get_task_model_id( | |
model_id, | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
log.debug( | |
f"generating chat title using model {task_model_id} for user {user.email} " | |
) | |
if app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE != "": | |
template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE | |
else: | |
template = """Create a concise, 3-5 word title with an emoji as a title for the chat history, in the given language. Suitable Emojis for the summary can be used to enhance understanding but avoid quotation marks or special formatting. RESPOND ONLY WITH THE TITLE TEXT. | |
Examples of titles: | |
📉 Stock Market Trends | |
🍪 Perfect Chocolate Chip Recipe | |
Evolution of Music Streaming | |
Remote Work Productivity Tips | |
Artificial Intelligence in Healthcare | |
🎮 Video Game Development Insights | |
<chat_history> | |
{{MESSAGES:END:2}} | |
</chat_history>""" | |
content = title_generation_template( | |
template, | |
form_data["messages"], | |
{ | |
"name": user.name, | |
"location": user.info.get("location") if user.info else None, | |
}, | |
) | |
payload = { | |
"model": task_model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
**( | |
{"max_tokens": 50} | |
if models[task_model_id]["owned_by"] == "ollama" | |
else { | |
"max_completion_tokens": 50, | |
} | |
), | |
"metadata": { | |
"task": str(TASKS.TITLE_GENERATION), | |
"task_body": form_data, | |
"chat_id": form_data.get("chat_id", None), | |
}, | |
} | |
# Handle pipeline filters | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
return await generate_chat_completions(form_data=payload, user=user) | |
async def generate_chat_tags(form_data: dict, user=Depends(get_verified_user)): | |
if not app.state.config.ENABLE_TAGS_GENERATION: | |
return JSONResponse( | |
status_code=status.HTTP_200_OK, | |
content={"detail": "Tags generation is disabled"}, | |
) | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
task_model_id = get_task_model_id( | |
model_id, | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
log.debug( | |
f"generating chat tags using model {task_model_id} for user {user.email} " | |
) | |
if app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE != "": | |
template = app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE | |
else: | |
template = """### Task: | |
Generate 1-3 broad tags categorizing the main themes of the chat history, along with 1-3 more specific subtopic tags. | |
### Guidelines: | |
- Start with high-level domains (e.g. Science, Technology, Philosophy, Arts, Politics, Business, Health, Sports, Entertainment, Education) | |
- Consider including relevant subfields/subdomains if they are strongly represented throughout the conversation | |
- If content is too short (less than 3 messages) or too diverse, use only ["General"] | |
- Use the chat's primary language; default to English if multilingual | |
- Prioritize accuracy over specificity | |
### Output: | |
JSON format: { "tags": ["tag1", "tag2", "tag3"] } | |
### Chat History: | |
<chat_history> | |
{{MESSAGES:END:6}} | |
</chat_history>""" | |
content = tags_generation_template( | |
template, form_data["messages"], {"name": user.name} | |
) | |
payload = { | |
"model": task_model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
"metadata": { | |
"task": str(TASKS.TAGS_GENERATION), | |
"task_body": form_data, | |
"chat_id": form_data.get("chat_id", None), | |
}, | |
} | |
# Handle pipeline filters | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
return await generate_chat_completions(form_data=payload, user=user) | |
async def generate_queries(form_data: dict, user=Depends(get_verified_user)): | |
type = form_data.get("type") | |
if type == "web_search": | |
if not app.state.config.ENABLE_SEARCH_QUERY_GENERATION: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=f"Search query generation is disabled", | |
) | |
elif type == "retrieval": | |
if not app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=f"Query generation is disabled", | |
) | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
task_model_id = get_task_model_id( | |
model_id, | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
log.debug( | |
f"generating {type} queries using model {task_model_id} for user {user.email}" | |
) | |
if (app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE).strip() != "": | |
template = app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE | |
else: | |
template = DEFAULT_QUERY_GENERATION_PROMPT_TEMPLATE | |
content = query_generation_template( | |
template, form_data["messages"], {"name": user.name} | |
) | |
payload = { | |
"model": task_model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
"metadata": { | |
"task": str(TASKS.QUERY_GENERATION), | |
"task_body": form_data, | |
"chat_id": form_data.get("chat_id", None), | |
}, | |
} | |
# Handle pipeline filters | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
return await generate_chat_completions(form_data=payload, user=user) | |
async def generate_autocompletion(form_data: dict, user=Depends(get_verified_user)): | |
if not app.state.config.ENABLE_AUTOCOMPLETE_GENERATION: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=f"Autocompletion generation is disabled", | |
) | |
type = form_data.get("type") | |
prompt = form_data.get("prompt") | |
messages = form_data.get("messages") | |
if app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH > 0: | |
if len(prompt) > app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=f"Input prompt exceeds maximum length of {app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH}", | |
) | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
task_model_id = get_task_model_id( | |
model_id, | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
log.debug( | |
f"generating autocompletion using model {task_model_id} for user {user.email}" | |
) | |
if (app.state.config.AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE).strip() != "": | |
template = app.state.config.AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE | |
else: | |
template = DEFAULT_AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE | |
content = autocomplete_generation_template( | |
template, prompt, messages, type, {"name": user.name} | |
) | |
payload = { | |
"model": task_model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
"metadata": { | |
"task": str(TASKS.AUTOCOMPLETE_GENERATION), | |
"task_body": form_data, | |
"chat_id": form_data.get("chat_id", None), | |
}, | |
} | |
print(payload) | |
# Handle pipeline filters | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
return await generate_chat_completions(form_data=payload, user=user) | |
async def generate_emoji(form_data: dict, user=Depends(get_verified_user)): | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
task_model_id = get_task_model_id( | |
model_id, | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
log.debug(f"generating emoji using model {task_model_id} for user {user.email} ") | |
template = ''' | |
Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱). | |
Message: """{{prompt}}""" | |
''' | |
content = emoji_generation_template( | |
template, | |
form_data["prompt"], | |
{ | |
"name": user.name, | |
"location": user.info.get("location") if user.info else None, | |
}, | |
) | |
payload = { | |
"model": task_model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
**( | |
{"max_tokens": 4} | |
if models[task_model_id]["owned_by"] == "ollama" | |
else { | |
"max_completion_tokens": 4, | |
} | |
), | |
"chat_id": form_data.get("chat_id", None), | |
"metadata": {"task": str(TASKS.EMOJI_GENERATION), "task_body": form_data}, | |
} | |
# Handle pipeline filters | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
return await generate_chat_completions(form_data=payload, user=user) | |
async def generate_moa_response(form_data: dict, user=Depends(get_verified_user)): | |
model_list = await get_all_models() | |
models = {model["id"]: model for model in model_list} | |
model_id = form_data["model"] | |
if model_id not in models: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
task_model_id = get_task_model_id( | |
model_id, | |
app.state.config.TASK_MODEL, | |
app.state.config.TASK_MODEL_EXTERNAL, | |
models, | |
) | |
log.debug(f"generating MOA model {task_model_id} for user {user.email} ") | |
template = """You have been provided with a set of responses from various models to the latest user query: "{{prompt}}" | |
Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability. | |
Responses from models: {{responses}}""" | |
content = moa_response_generation_template( | |
template, | |
form_data["prompt"], | |
form_data["responses"], | |
) | |
payload = { | |
"model": task_model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": form_data.get("stream", False), | |
"chat_id": form_data.get("chat_id", None), | |
"metadata": { | |
"task": str(TASKS.MOA_RESPONSE_GENERATION), | |
"task_body": form_data, | |
}, | |
} | |
try: | |
payload = filter_pipeline(payload, user, models) | |
except Exception as e: | |
if len(e.args) > 1: | |
return JSONResponse( | |
status_code=e.args[0], | |
content={"detail": e.args[1]}, | |
) | |
else: | |
return JSONResponse( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
content={"detail": str(e)}, | |
) | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
return await generate_chat_completions(form_data=payload, user=user) | |
################################## | |
# | |
# Pipelines Endpoints | |
# | |
################################## | |
# TODO: Refactor pipelines API endpoints below into a separate file | |
async def get_pipelines_list(user=Depends(get_admin_user)): | |
responses = await get_openai_models_responses() | |
log.debug(f"get_pipelines_list: get_openai_models_responses returned {responses}") | |
urlIdxs = [ | |
idx | |
for idx, response in enumerate(responses) | |
if response is not None and "pipelines" in response | |
] | |
return { | |
"data": [ | |
{ | |
"url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx], | |
"idx": urlIdx, | |
} | |
for urlIdx in urlIdxs | |
] | |
} | |
async def upload_pipeline( | |
urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user) | |
): | |
print("upload_pipeline", urlIdx, file.filename) | |
# Check if the uploaded file is a python file | |
if not (file.filename and file.filename.endswith(".py")): | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail="Only Python (.py) files are allowed.", | |
) | |
upload_folder = f"{CACHE_DIR}/pipelines" | |
os.makedirs(upload_folder, exist_ok=True) | |
file_path = os.path.join(upload_folder, file.filename) | |
r = None | |
try: | |
# Save the uploaded file | |
with open(file_path, "wb") as buffer: | |
shutil.copyfileobj(file.file, buffer) | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
with open(file_path, "rb") as f: | |
files = {"file": f} | |
r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
status_code = status.HTTP_404_NOT_FOUND | |
if r is not None: | |
status_code = r.status_code | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=status_code, | |
detail=detail, | |
) | |
finally: | |
# Ensure the file is deleted after the upload is completed or on failure | |
if os.path.exists(file_path): | |
os.remove(file_path) | |
class AddPipelineForm(BaseModel): | |
url: str | |
urlIdx: int | |
async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)): | |
r = None | |
try: | |
urlIdx = form_data.urlIdx | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/pipelines/add", headers=headers, json={"url": form_data.url} | |
) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
class DeletePipelineForm(BaseModel): | |
id: str | |
urlIdx: int | |
async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)): | |
r = None | |
try: | |
urlIdx = form_data.urlIdx | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.delete( | |
f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id} | |
) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)): | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.get(f"{url}/pipelines", headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_pipeline_valves( | |
urlIdx: Optional[int], | |
pipeline_id: str, | |
user=Depends(get_admin_user), | |
): | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_pipeline_valves_spec( | |
urlIdx: Optional[int], | |
pipeline_id: str, | |
user=Depends(get_admin_user), | |
): | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def update_pipeline_valves( | |
urlIdx: Optional[int], | |
pipeline_id: str, | |
form_data: dict, | |
user=Depends(get_admin_user), | |
): | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/{pipeline_id}/valves/update", | |
headers=headers, | |
json={**form_data}, | |
) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except Exception: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
################################## | |
# | |
# Config Endpoints | |
# | |
################################## | |
async def get_app_config(request: Request): | |
user = None | |
if "token" in request.cookies: | |
token = request.cookies.get("token") | |
try: | |
data = decode_token(token) | |
except Exception as e: | |
log.debug(e) | |
raise HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="Invalid token", | |
) | |
if data is not None and "id" in data: | |
user = Users.get_user_by_id(data["id"]) | |
onboarding = False | |
if user is None: | |
user_count = Users.get_num_users() | |
onboarding = user_count == 0 | |
return { | |
**({"onboarding": True} if onboarding else {}), | |
"status": True, | |
"name": WEBUI_NAME, | |
"version": VERSION, | |
"default_locale": str(DEFAULT_LOCALE), | |
"oauth": { | |
"providers": { | |
name: config.get("name", name) | |
for name, config in OAUTH_PROVIDERS.items() | |
} | |
}, | |
"features": { | |
"auth": WEBUI_AUTH, | |
"auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER), | |
"enable_ldap": webui_app.state.config.ENABLE_LDAP, | |
"enable_api_key": webui_app.state.config.ENABLE_API_KEY, | |
"enable_signup": webui_app.state.config.ENABLE_SIGNUP, | |
"enable_login_form": webui_app.state.config.ENABLE_LOGIN_FORM, | |
**( | |
{ | |
"enable_web_search": retrieval_app.state.config.ENABLE_RAG_WEB_SEARCH, | |
"enable_image_generation": images_app.state.config.ENABLED, | |
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING, | |
"enable_message_rating": webui_app.state.config.ENABLE_MESSAGE_RATING, | |
"enable_admin_export": ENABLE_ADMIN_EXPORT, | |
"enable_admin_chat_access": ENABLE_ADMIN_CHAT_ACCESS, | |
} | |
if user is not None | |
else {} | |
), | |
}, | |
**( | |
{ | |
"default_models": webui_app.state.config.DEFAULT_MODELS, | |
"default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS, | |
"audio": { | |
"tts": { | |
"engine": audio_app.state.config.TTS_ENGINE, | |
"voice": audio_app.state.config.TTS_VOICE, | |
"split_on": audio_app.state.config.TTS_SPLIT_ON, | |
}, | |
"stt": { | |
"engine": audio_app.state.config.STT_ENGINE, | |
}, | |
}, | |
"file": { | |
"max_size": retrieval_app.state.config.FILE_MAX_SIZE, | |
"max_count": retrieval_app.state.config.FILE_MAX_COUNT, | |
}, | |
"permissions": {**webui_app.state.config.USER_PERMISSIONS}, | |
} | |
if user is not None | |
else {} | |
), | |
} | |
# TODO: webhook endpoint should be under config endpoints | |
async def get_webhook_url(user=Depends(get_admin_user)): | |
return { | |
"url": app.state.config.WEBHOOK_URL, | |
} | |
class UrlForm(BaseModel): | |
url: str | |
async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)): | |
app.state.config.WEBHOOK_URL = form_data.url | |
webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL | |
return {"url": app.state.config.WEBHOOK_URL} | |
async def get_app_version(): | |
return { | |
"version": VERSION, | |
} | |
async def get_app_changelog(): | |
return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5} | |
async def get_app_latest_release_version(): | |
if OFFLINE_MODE: | |
log.debug( | |
f"Offline mode is enabled, returning current version as latest version" | |
) | |
return {"current": VERSION, "latest": VERSION} | |
try: | |
timeout = aiohttp.ClientTimeout(total=1) | |
async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session: | |
async with session.get( | |
"https://api.github.com/repos/open-webui/open-webui/releases/latest" | |
) as response: | |
response.raise_for_status() | |
data = await response.json() | |
latest_version = data["tag_name"] | |
return {"current": VERSION, "latest": latest_version[1:]} | |
except Exception as e: | |
log.debug(e) | |
return {"current": VERSION, "latest": VERSION} | |
############################ | |
# OAuth Login & Callback | |
############################ | |
# SessionMiddleware is used by authlib for oauth | |
if len(OAUTH_PROVIDERS) > 0: | |
app.add_middleware( | |
SessionMiddleware, | |
secret_key=WEBUI_SECRET_KEY, | |
session_cookie="oui-session", | |
same_site=WEBUI_SESSION_COOKIE_SAME_SITE, | |
https_only=WEBUI_SESSION_COOKIE_SECURE, | |
) | |
async def oauth_login(provider: str, request: Request): | |
return await oauth_manager.handle_login(provider, request) | |
# OAuth login logic is as follows: | |
# 1. Attempt to find a user with matching subject ID, tied to the provider | |
# 2. If OAUTH_MERGE_ACCOUNTS_BY_EMAIL is true, find a user with the email address provided via OAuth | |
# - This is considered insecure in general, as OAuth providers do not always verify email addresses | |
# 3. If there is no user, and ENABLE_OAUTH_SIGNUP is true, create a user | |
# - Email addresses are considered unique, so we fail registration if the email address is already taken | |
async def oauth_callback(provider: str, request: Request, response: Response): | |
return await oauth_manager.handle_callback(provider, request, response) | |
async def get_manifest_json(): | |
return { | |
"name": WEBUI_NAME, | |
"short_name": WEBUI_NAME, | |
"description": "Open WebUI is an open, extensible, user-friendly interface for AI that adapts to your workflow.", | |
"start_url": "/", | |
"display": "standalone", | |
"background_color": "#343541", | |
"orientation": "natural", | |
"icons": [ | |
{ | |
"src": "/static/logo.png", | |
"type": "image/png", | |
"sizes": "500x500", | |
"purpose": "any", | |
}, | |
{ | |
"src": "/static/logo.png", | |
"type": "image/png", | |
"sizes": "500x500", | |
"purpose": "maskable", | |
}, | |
], | |
} | |
async def get_opensearch_xml(): | |
xml_content = rf""" | |
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:moz="http://www.mozilla.org/2006/browser/search/"> | |
<ShortName>{WEBUI_NAME}</ShortName> | |
<Description>Search {WEBUI_NAME}</Description> | |
<InputEncoding>UTF-8</InputEncoding> | |
<Image width="16" height="16" type="image/x-icon">{WEBUI_URL}/static/favicon.png</Image> | |
<Url type="text/html" method="get" template="{WEBUI_URL}/?q={"{searchTerms}"}"/> | |
<moz:SearchForm>{WEBUI_URL}</moz:SearchForm> | |
</OpenSearchDescription> | |
""" | |
return Response(content=xml_content, media_type="application/xml") | |
async def healthcheck(): | |
return {"status": True} | |
async def healthcheck_with_db(): | |
Session.execute(text("SELECT 1;")).all() | |
return {"status": True} | |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") | |
app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache") | |
if os.path.exists(FRONTEND_BUILD_DIR): | |
mimetypes.add_type("text/javascript", ".js") | |
app.mount( | |
"/", | |
SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True), | |
name="spa-static-files", | |
) | |
else: | |
log.warning( | |
f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only." | |
) | |