Zeph27 commited on
Commit
aef55a8
1 Parent(s): d060f6a
.gitignore ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MDX Models
2
+ mdxnet_models/*.onnx
3
+
4
+ # RVC Models
5
+ rvc_models/*/*.pth
6
+ rvc_models/*/*.index
7
+ rvc_models/*/*.npy
8
+ rvc_models/*/*.zip
9
+ rvc_models/*/*.rar
10
+ rvc_models/hubert_base.pt
11
+ rvc_models/rmvpe.pt
12
+
13
+ # Output
14
+ song_output/*/*.wav
15
+ song_output/*/*.mp3
16
+
17
+ AICoverGen/
18
+
19
+ # Byte-compiled / optimized / DLL files
20
+ __pycache__/
21
+ *.py[cod]
22
+ *$py.class
23
+
24
+ # C extensions
25
+ *.so
26
+
27
+ # Distribution / packaging
28
+ .Python
29
+ build/
30
+ develop-eggs/
31
+ dist/
32
+ downloads/
33
+ eggs/
34
+ .eggs/
35
+ lib/
36
+ lib64/
37
+ parts/
38
+ sdist/
39
+ var/
40
+ wheels/
41
+ share/python-wheels/
42
+ *.egg-info/
43
+ .installed.cfg
44
+ *.egg
45
+ MANIFEST
46
+
47
+ # PyInstaller
48
+ # Usually these files are written by a python script from a template
49
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
50
+ *.manifest
51
+ *.spec
52
+
53
+ # Installer logs
54
+ pip-log.txt
55
+ pip-delete-this-directory.txt
56
+
57
+ # Unit test / coverage reports
58
+ htmlcov/
59
+ .tox/
60
+ .nox/
61
+ .coverage
62
+ .coverage.*
63
+ .cache
64
+ nosetests.xml
65
+ coverage.xml
66
+ *.cover
67
+ *.py,cover
68
+ .hypothesis/
69
+ .pytest_cache/
70
+ cover/
71
+
72
+ # Translations
73
+ *.mo
74
+ *.pot
75
+
76
+ # Django stuff:
77
+ *.log
78
+ local_settings.py
79
+ db.sqlite3
80
+ db.sqlite3-journal
81
+
82
+ # Flask stuff:
83
+ instance/
84
+ .webassets-cache
85
+
86
+ # Scrapy stuff:
87
+ .scrapy
88
+
89
+ # Sphinx documentation
90
+ docs/_build/
91
+
92
+ # PyBuilder
93
+ .pybuilder/
94
+ target/
95
+
96
+ # Jupyter Notebook
97
+ .ipynb_checkpoints
98
+
99
+ # IPython
100
+ profile_default/
101
+ ipython_config.py
102
+
103
+ # pyenv
104
+ # For a library or package, you might want to ignore these files since the code is
105
+ # intended to run in multiple environments; otherwise, check them in:
106
+ # .python-version
107
+
108
+ # pipenv
109
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
110
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
111
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
112
+ # install all needed dependencies.
113
+ #Pipfile.lock
114
+
115
+ # poetry
116
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
117
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
118
+ # commonly ignored for libraries.
119
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
120
+ #poetry.lock
121
+
122
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
123
+ __pypackages__/
124
+
125
+ # Celery stuff
126
+ celerybeat-schedule
127
+ celerybeat.pid
128
+
129
+ # SageMath parsed files
130
+ *.sage.py
131
+
132
+ # Environments
133
+ .env
134
+ .venv
135
+ env/
136
+ venv/
137
+ ENV/
138
+ env.bak/
139
+ venv.bak/
140
+
141
+ # Spyder project settings
142
+ .spyderproject
143
+ .spyproject
144
+
145
+ # Rope project settings
146
+ .ropeproject
147
+
148
+ # mkdocs documentation
149
+ /site
150
+
151
+ # mypy
152
+ .mypy_cache/
153
+ .dmypy.json
154
+ dmypy.json
155
+
156
+ # Pyre type checker
157
+ .pyre/
158
+
159
+ # pytype static type analyzer
160
+ .pytype/
161
+
162
+ # Cython debug symbols
163
+ cython_debug/
164
+
165
+ # PyCharm
166
+ # JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
167
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
168
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
169
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
170
+ .idea/
app.py CHANGED
@@ -1,7 +1,305 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
1
+ import json
2
+ import os
3
+ import shutil
4
+ import urllib.request
5
+ import zipfile
6
+ import gdown
7
+ from argparse import ArgumentParser
8
+
9
  import gradio as gr
10
 
11
+ from src.main import song_cover_pipeline
12
+
13
+ BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
14
+
15
+ mdxnet_models_dir = 'mdxnet_models'
16
+ rvc_models_dir = 'rvc_models'
17
+ output_dir = 'song_output'
18
+
19
+ def download_and_extract_model(model_url, model_name, progress=gr.Progress()):
20
+ try:
21
+ os.makedirs(rvc_models_dir, exist_ok=True)
22
+
23
+ extraction_folder = os.path.join(rvc_models_dir, model_name)
24
+ zip_path = os.path.join(rvc_models_dir, f'{model_name}.zip')
25
+
26
+ if os.path.exists(extraction_folder):
27
+ raise gr.Error(f'Voice model directory {model_name} already exists! Choose a different name for your voice model.')
28
+
29
+ progress(0, desc=f'[~] Downloading voice model with name {model_name}...')
30
+
31
+ try:
32
+ if 'huggingface.co' in model_url:
33
+ urllib.request.urlretrieve(model_url, zip_path)
34
+ elif 'pixeldrain.com' in model_url:
35
+ pixeldrain_id = model_url.split('/')[-1]
36
+ pixeldrain_url = f'https://pixeldrain.com/api/file/{pixeldrain_id}'
37
+ urllib.request.urlretrieve(pixeldrain_url, zip_path)
38
+ elif 'drive.google.com' in model_url:
39
+ file_id = model_url.split('/')[-2]
40
+ gdown.download(id=file_id, output=zip_path, quiet=False)
41
+ else:
42
+ urllib.request.urlretrieve(model_url, zip_path)
43
+ except Exception as download_error:
44
+ raise gr.Error(f"Failed to download the model: {str(download_error)}")
45
+
46
+ if not os.path.exists(zip_path):
47
+ raise gr.Error(f"Failed to download the model. The zip file was not created.")
48
+
49
+ progress(0.5, desc="Extracting model...")
50
+ extract_zip(extraction_folder, zip_path)
51
+
52
+ pth_files = [f for f in os.listdir(extraction_folder) if f.endswith('.pth')]
53
+ if not pth_files:
54
+ raise ValueError("No .pth file found in the downloaded model.")
55
+
56
+ progress(1, desc="Model ready")
57
+ return model_name
58
+
59
+ except Exception as e:
60
+ if os.path.exists(extraction_folder):
61
+ shutil.rmtree(extraction_folder)
62
+ if os.path.exists(zip_path):
63
+ os.remove(zip_path)
64
+ raise gr.Error(f"Error downloading or extracting model: {str(e)}")
65
+
66
+ def cleanup_temp_model(model_name):
67
+ temp_dir = os.path.join(rvc_models_dir, model_name)
68
+ try:
69
+ shutil.rmtree(temp_dir)
70
+ except Exception as e:
71
+ print(f"Error cleaning up temporary model files: {str(e)}")
72
+
73
+ def extract_zip(extraction_folder, zip_name):
74
+ os.makedirs(extraction_folder)
75
+ with zipfile.ZipFile(zip_name, 'r') as zip_ref:
76
+ zip_ref.extractall(extraction_folder)
77
+ os.remove(zip_name)
78
+
79
+ index_filepath, model_filepath = None, None
80
+ for root, dirs, files in os.walk(extraction_folder):
81
+ for name in files:
82
+ if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
83
+ index_filepath = os.path.join(root, name)
84
+
85
+ if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
86
+ model_filepath = os.path.join(root, name)
87
+
88
+ if not model_filepath:
89
+ raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
90
+
91
+ # move model and index file to extraction folder
92
+ os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
93
+ if index_filepath:
94
+ os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
95
+
96
+ # remove any unnecessary nested folders
97
+ for filepath in os.listdir(extraction_folder):
98
+ if os.path.isdir(os.path.join(extraction_folder, filepath)):
99
+ shutil.rmtree(os.path.join(extraction_folder, filepath))
100
+
101
+
102
+ def download_online_model(url, dir_name, progress=gr.Progress()):
103
+ try:
104
+ progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
105
+ zip_name = url.split('/')[-1]
106
+ extraction_folder = os.path.join(rvc_models_dir, dir_name)
107
+ if os.path.exists(extraction_folder):
108
+ raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
109
+
110
+ if 'huggingface.co' in url:
111
+ urllib.request.urlretrieve(url, zip_name)
112
+
113
+ if 'pixeldrain.com' in url:
114
+ zip_name = dir_name + '.zip'
115
+ url = f'https://pixeldrain.com/api/file/{zip_name}'
116
+ urllib.request.urlretrieve(url, zip_name)
117
+
118
+ elif 'drive.google.com' in url:
119
+ # Extract the Google Drive file ID
120
+ zip_name = dir_name + '.zip'
121
+ file_id = url.split('/')[-2]
122
+ output = os.path.join('.', f'{dir_name}.zip') # Adjust the output path if needed
123
+ gdown.download(id=file_id, output=output, quiet=False)
124
+
125
+ progress(0.5, desc='[~] Extracting zip...')
126
+ extract_zip(extraction_folder, zip_name)
127
+ return f'[+] {dir_name} Model successfully downloaded!'
128
+
129
+ except Exception as e:
130
+ raise gr.Error(str(e))
131
+
132
+
133
+ def upload_local_model(zip_path, dir_name, progress=gr.Progress()):
134
+ try:
135
+ extraction_folder = os.path.join(rvc_models_dir, dir_name)
136
+ if os.path.exists(extraction_folder):
137
+ raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
138
+
139
+ zip_name = zip_path.name
140
+ progress(0.5, desc='[~] Extracting zip...')
141
+ extract_zip(extraction_folder, zip_name)
142
+ return f'[+] {dir_name} Model successfully uploaded!'
143
+
144
+ except Exception as e:
145
+ raise gr.Error(str(e))
146
+
147
+ def pub_dl_autofill(pub_models, event: gr.SelectData):
148
+ return gr.Text.update(value=pub_models.loc[event.index[0], 'URL']), gr.Text.update(value=pub_models.loc[event.index[0], 'Model Name'])
149
+
150
+
151
+ def swap_visibility():
152
+ return gr.update(visible=True), gr.update(visible=False), gr.update(value=''), gr.update(value=None)
153
+
154
+
155
+ def process_file_upload(file):
156
+ return file.name, gr.update(value=file.name)
157
+
158
+
159
+ def show_hop_slider(pitch_detection_algo):
160
+ if pitch_detection_algo == 'mangio-crepe':
161
+ return gr.update(visible=True)
162
+ else:
163
+ return gr.update(visible=False)
164
+
165
+
166
+ def song_cover_pipeline_with_model_download(song_input, model_url, model_name, pitch, keep_files, is_webui, main_gain, backup_gain,
167
+ inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
168
+ protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
169
+ output_format, progress=gr.Progress()):
170
+ model_path = None
171
+ try:
172
+ model_path = download_and_extract_model(model_url, model_name, progress)
173
+ print(f"Model path: {model_path}")
174
+ result = song_cover_pipeline(song_input, model_path, pitch, keep_files, is_webui, main_gain, backup_gain,
175
+ inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
176
+ protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
177
+ output_format, progress)
178
+
179
+ # Clean up old folders in song_output
180
+ output_folders = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f))]
181
+ output_folders.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)))
182
+
183
+ while len(output_folders) > 100:
184
+ oldest_folder = output_folders.pop(0)
185
+ shutil.rmtree(os.path.join(output_dir, oldest_folder))
186
+
187
+ return result
188
+ except gr.Error as e:
189
+ return str(e), None # Return error message and None for the second output
190
+ finally:
191
+ if model_path:
192
+ cleanup_temp_model(model_path)
193
+
194
+
195
+ if __name__ == '__main__':
196
+ parser = ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
197
+ parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
198
+ parser.add_argument("--listen", action="store_true", default=False, help="Make the WebUI reachable from your local network.")
199
+ parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
200
+ parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
201
+ args = parser.parse_args()
202
+
203
+ with gr.Blocks(title='AICoverGenWebUI', theme='NoCrypt/miku@1.2.2') as app:
204
+
205
+ gr.Label('AICoverGen WebUI created with ❤️', show_label=False)
206
+
207
+ # main tab
208
+ with gr.Tab("Generate"):
209
+
210
+ with gr.Accordion('Main Options'):
211
+ with gr.Row():
212
+ with gr.Column():
213
+ model_url = gr.Text(label='Voice Model URL', info='Enter the URL of the voice model zip file', value='https://huggingface.co/megaaziib/my-rvc-models-collection/resolve/main/kobo.zip')
214
+ model_name = gr.Text(label='Voice Model Name', info='Enter the name of the voice model', value='kobo')
215
+ # rvc_model = gr.Dropdown(voice_models, label='Voice Models', info='Models folder "AICoverGen --> rvc_models". After new models are added into this folder, click the refresh button')
216
+
217
+ with gr.Column() as yt_link_col:
218
+ song_input = gr.Text(label='Song input', info='Link to a song on YouTube or full path to a local file. For file upload, click the button below.', value='https://youtu.be/FRh7LvlQTuA')
219
+ show_file_upload_button = gr.Button('Upload file instead')
220
+
221
+ with gr.Column(visible=False) as file_upload_col:
222
+ local_file = gr.File(label='Audio file')
223
+ song_input_file = gr.UploadButton('Upload 📂', file_types=['audio'], variant='primary')
224
+ show_yt_link_button = gr.Button('Paste YouTube link/Path to local file instead')
225
+ song_input_file.upload(process_file_upload, inputs=[song_input_file], outputs=[local_file, song_input])
226
+
227
+ with gr.Column():
228
+ pitch = gr.Slider(-24, 24, value=0, step=1, label='Pitch Change (Vocals ONLY)', info='Generally, use 12 for male to female conversions and -12 for vice-versa. (Octaves)')
229
+ pitch_all = gr.Slider(-12, 12, value=0, step=1, label='Overall Pitch Change', info='Changes pitch/key of vocals and instrumentals together. Altering this slightly reduces sound quality. (Semitones)')
230
+ show_file_upload_button.click(swap_visibility, outputs=[file_upload_col, yt_link_col, song_input, local_file])
231
+ show_yt_link_button.click(swap_visibility, outputs=[yt_link_col, file_upload_col, song_input, local_file])
232
+
233
+ with gr.Accordion('Voice conversion options', open=False):
234
+ with gr.Row():
235
+ index_rate = gr.Slider(0, 1, value=0.5, label='Index Rate', info="Controls how much of the AI voice's accent to keep in the vocals")
236
+ filter_radius = gr.Slider(0, 7, value=3, step=1, label='Filter radius', info='If >=3: apply median filtering median filtering to the harvested pitch results. Can reduce breathiness')
237
+ rms_mix_rate = gr.Slider(0, 1, value=0.25, label='RMS mix rate', info="Control how much to mimic the original vocal's loudness (0) or a fixed loudness (1)")
238
+ protect = gr.Slider(0, 0.5, value=0.33, label='Protect rate', info='Protect voiceless consonants and breath sounds. Set to 0.5 to disable.')
239
+ with gr.Column():
240
+ f0_method = gr.Dropdown(['rmvpe', 'mangio-crepe'], value='rmvpe', label='Pitch detection algorithm', info='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals)')
241
+ crepe_hop_length = gr.Slider(32, 320, value=128, step=1, visible=False, label='Crepe hop length', info='Lower values leads to longer conversions and higher risk of voice cracks, but better pitch accuracy.')
242
+ f0_method.change(show_hop_slider, inputs=f0_method, outputs=crepe_hop_length)
243
+ keep_files = gr.Checkbox(label='Keep intermediate files', info='Keep all audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals. Leave unchecked to save space')
244
+
245
+ with gr.Accordion('Audio mixing options', open=False):
246
+ gr.Markdown('### Volume Change (decibels)')
247
+ with gr.Row():
248
+ main_gain = gr.Slider(-20, 20, value=0, step=1, label='Main Vocals')
249
+ backup_gain = gr.Slider(-20, 20, value=0, step=1, label='Backup Vocals')
250
+ inst_gain = gr.Slider(-20, 20, value=0, step=1, label='Music')
251
+
252
+ gr.Markdown('### Reverb Control on AI Vocals')
253
+ with gr.Row():
254
+ reverb_rm_size = gr.Slider(0, 1, value=0.15, label='Room size', info='The larger the room, the longer the reverb time')
255
+ reverb_wet = gr.Slider(0, 1, value=0.2, label='Wetness level', info='Level of AI vocals with reverb')
256
+ reverb_dry = gr.Slider(0, 1, value=0.8, label='Dryness level', info='Level of AI vocals without reverb')
257
+ reverb_damping = gr.Slider(0, 1, value=0.7, label='Damping level', info='Absorption of high frequencies in the reverb')
258
+
259
+ gr.Markdown('### Audio Output Format')
260
+ output_format = gr.Dropdown(['mp3', 'wav'], value='mp3', label='Output file type', info='mp3: small file size, decent quality. wav: Large file size, best quality')
261
+
262
+ with gr.Row():
263
+ clear_btn = gr.ClearButton(value='Clear', components=[song_input, model_url, keep_files, local_file])
264
+ generate_btn = gr.Button("Generate", variant='primary')
265
+ with gr.Row():
266
+ ai_cover = gr.Audio(label='AI Cover (Vocal Only Inference)', show_share_button=False)
267
+ ai_backing = gr.Audio(label='AI Cover (Vocal Backing Inference)', show_share_button=False)
268
+
269
+ is_webui = gr.Number(value=1, visible=False)
270
+ generate_btn.click(song_cover_pipeline_with_model_download,
271
+ inputs=[song_input, model_url, model_name, pitch, keep_files, is_webui, main_gain, backup_gain,
272
+
273
+ inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
274
+ protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
275
+ output_format],
276
+ outputs=[ai_cover, ai_backing])
277
+ clear_btn.click(lambda: [0, 0, 0, 0, 0.5, 3, 0.25, 0.33, 'rmvpe', 128, 0, 0.15, 0.2, 0.8, 0.7, 'mp3', None],
278
+ outputs=[pitch, main_gain, backup_gain, inst_gain, index_rate, filter_radius, rms_mix_rate,
279
+ protect, f0_method, crepe_hop_length, pitch_all, reverb_rm_size, reverb_wet,
280
+ reverb_dry, reverb_damping, output_format, ai_cover])
281
+
282
+ # Upload tab
283
+ with gr.Tab('Upload model'):
284
+ gr.Markdown('## Upload locally trained RVC v2 model and index file')
285
+ gr.Markdown('- Find model file (weights folder) and optional index file (logs/[name] folder)')
286
+ gr.Markdown('- Compress files into zip file')
287
+ gr.Markdown('- Upload zip file and give unique name for voice')
288
+ gr.Markdown('- Click Upload model')
289
+
290
+ with gr.Row():
291
+ with gr.Column():
292
+ zip_file = gr.File(label='Zip file')
293
+
294
+ local_model_name = gr.Text(label='Model name')
295
+
296
+ with gr.Row():
297
+ model_upload_button = gr.Button('Upload model', variant='primary', scale=19)
298
+ local_upload_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
299
+ model_upload_button.click(upload_local_model, inputs=[zip_file, local_model_name], outputs=local_upload_output_message)
300
 
301
+ app.launch(
302
+ share=args.share_enabled,
303
+ server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
304
+ server_port=args.listen_port,
305
+ )
mdxnet_models/model_data.json ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "0ddfc0eb5792638ad5dc27850236c246": {
3
+ "compensate": 1.035,
4
+ "mdx_dim_f_set": 2048,
5
+ "mdx_dim_t_set": 8,
6
+ "mdx_n_fft_scale_set": 6144,
7
+ "primary_stem": "Vocals"
8
+ },
9
+ "26d308f91f3423a67dc69a6d12a8793d": {
10
+ "compensate": 1.035,
11
+ "mdx_dim_f_set": 2048,
12
+ "mdx_dim_t_set": 9,
13
+ "mdx_n_fft_scale_set": 8192,
14
+ "primary_stem": "Other"
15
+ },
16
+ "2cdd429caac38f0194b133884160f2c6": {
17
+ "compensate": 1.045,
18
+ "mdx_dim_f_set": 3072,
19
+ "mdx_dim_t_set": 8,
20
+ "mdx_n_fft_scale_set": 7680,
21
+ "primary_stem": "Instrumental"
22
+ },
23
+ "2f5501189a2f6db6349916fabe8c90de": {
24
+ "compensate": 1.035,
25
+ "mdx_dim_f_set": 2048,
26
+ "mdx_dim_t_set": 8,
27
+ "mdx_n_fft_scale_set": 6144,
28
+ "primary_stem": "Vocals"
29
+ },
30
+ "398580b6d5d973af3120df54cee6759d": {
31
+ "compensate": 1.75,
32
+ "mdx_dim_f_set": 3072,
33
+ "mdx_dim_t_set": 8,
34
+ "mdx_n_fft_scale_set": 7680,
35
+ "primary_stem": "Vocals"
36
+ },
37
+ "488b3e6f8bd3717d9d7c428476be2d75": {
38
+ "compensate": 1.035,
39
+ "mdx_dim_f_set": 3072,
40
+ "mdx_dim_t_set": 8,
41
+ "mdx_n_fft_scale_set": 7680,
42
+ "primary_stem": "Instrumental"
43
+ },
44
+ "4910e7827f335048bdac11fa967772f9": {
45
+ "compensate": 1.035,
46
+ "mdx_dim_f_set": 2048,
47
+ "mdx_dim_t_set": 7,
48
+ "mdx_n_fft_scale_set": 4096,
49
+ "primary_stem": "Drums"
50
+ },
51
+ "53c4baf4d12c3e6c3831bb8f5b532b93": {
52
+ "compensate": 1.043,
53
+ "mdx_dim_f_set": 3072,
54
+ "mdx_dim_t_set": 8,
55
+ "mdx_n_fft_scale_set": 7680,
56
+ "primary_stem": "Vocals"
57
+ },
58
+ "5d343409ef0df48c7d78cce9f0106781": {
59
+ "compensate": 1.075,
60
+ "mdx_dim_f_set": 3072,
61
+ "mdx_dim_t_set": 8,
62
+ "mdx_n_fft_scale_set": 7680,
63
+ "primary_stem": "Vocals"
64
+ },
65
+ "5f6483271e1efb9bfb59e4a3e6d4d098": {
66
+ "compensate": 1.035,
67
+ "mdx_dim_f_set": 2048,
68
+ "mdx_dim_t_set": 9,
69
+ "mdx_n_fft_scale_set": 6144,
70
+ "primary_stem": "Vocals"
71
+ },
72
+ "65ab5919372a128e4167f5e01a8fda85": {
73
+ "compensate": 1.035,
74
+ "mdx_dim_f_set": 2048,
75
+ "mdx_dim_t_set": 8,
76
+ "mdx_n_fft_scale_set": 8192,
77
+ "primary_stem": "Other"
78
+ },
79
+ "6703e39f36f18aa7855ee1047765621d": {
80
+ "compensate": 1.035,
81
+ "mdx_dim_f_set": 2048,
82
+ "mdx_dim_t_set": 9,
83
+ "mdx_n_fft_scale_set": 16384,
84
+ "primary_stem": "Bass"
85
+ },
86
+ "6b31de20e84392859a3d09d43f089515": {
87
+ "compensate": 1.035,
88
+ "mdx_dim_f_set": 2048,
89
+ "mdx_dim_t_set": 8,
90
+ "mdx_n_fft_scale_set": 6144,
91
+ "primary_stem": "Vocals"
92
+ },
93
+ "867595e9de46f6ab699008295df62798": {
94
+ "compensate": 1.03,
95
+ "mdx_dim_f_set": 3072,
96
+ "mdx_dim_t_set": 8,
97
+ "mdx_n_fft_scale_set": 7680,
98
+ "primary_stem": "Vocals"
99
+ },
100
+ "a3cd63058945e777505c01d2507daf37": {
101
+ "compensate": 1.03,
102
+ "mdx_dim_f_set": 2048,
103
+ "mdx_dim_t_set": 8,
104
+ "mdx_n_fft_scale_set": 6144,
105
+ "primary_stem": "Vocals"
106
+ },
107
+ "b33d9b3950b6cbf5fe90a32608924700": {
108
+ "compensate": 1.03,
109
+ "mdx_dim_f_set": 3072,
110
+ "mdx_dim_t_set": 8,
111
+ "mdx_n_fft_scale_set": 7680,
112
+ "primary_stem": "Vocals"
113
+ },
114
+ "c3b29bdce8c4fa17ec609e16220330ab": {
115
+ "compensate": 1.035,
116
+ "mdx_dim_f_set": 2048,
117
+ "mdx_dim_t_set": 8,
118
+ "mdx_n_fft_scale_set": 16384,
119
+ "primary_stem": "Bass"
120
+ },
121
+ "ceed671467c1f64ebdfac8a2490d0d52": {
122
+ "compensate": 1.035,
123
+ "mdx_dim_f_set": 3072,
124
+ "mdx_dim_t_set": 8,
125
+ "mdx_n_fft_scale_set": 7680,
126
+ "primary_stem": "Instrumental"
127
+ },
128
+ "d2a1376f310e4f7fa37fb9b5774eb701": {
129
+ "compensate": 1.035,
130
+ "mdx_dim_f_set": 3072,
131
+ "mdx_dim_t_set": 8,
132
+ "mdx_n_fft_scale_set": 7680,
133
+ "primary_stem": "Instrumental"
134
+ },
135
+ "d7bff498db9324db933d913388cba6be": {
136
+ "compensate": 1.035,
137
+ "mdx_dim_f_set": 2048,
138
+ "mdx_dim_t_set": 8,
139
+ "mdx_n_fft_scale_set": 6144,
140
+ "primary_stem": "Vocals"
141
+ },
142
+ "d94058f8c7f1fae4164868ae8ae66b20": {
143
+ "compensate": 1.035,
144
+ "mdx_dim_f_set": 2048,
145
+ "mdx_dim_t_set": 8,
146
+ "mdx_n_fft_scale_set": 6144,
147
+ "primary_stem": "Vocals"
148
+ },
149
+ "dc41ede5961d50f277eb846db17f5319": {
150
+ "compensate": 1.035,
151
+ "mdx_dim_f_set": 2048,
152
+ "mdx_dim_t_set": 9,
153
+ "mdx_n_fft_scale_set": 4096,
154
+ "primary_stem": "Drums"
155
+ },
156
+ "e5572e58abf111f80d8241d2e44e7fa4": {
157
+ "compensate": 1.028,
158
+ "mdx_dim_f_set": 3072,
159
+ "mdx_dim_t_set": 8,
160
+ "mdx_n_fft_scale_set": 7680,
161
+ "primary_stem": "Instrumental"
162
+ },
163
+ "e7324c873b1f615c35c1967f912db92a": {
164
+ "compensate": 1.03,
165
+ "mdx_dim_f_set": 3072,
166
+ "mdx_dim_t_set": 8,
167
+ "mdx_n_fft_scale_set": 7680,
168
+ "primary_stem": "Vocals"
169
+ },
170
+ "1c56ec0224f1d559c42fd6fd2a67b154": {
171
+ "compensate": 1.025,
172
+ "mdx_dim_f_set": 2048,
173
+ "mdx_dim_t_set": 8,
174
+ "mdx_n_fft_scale_set": 5120,
175
+ "primary_stem": "Instrumental"
176
+ },
177
+ "f2df6d6863d8f435436d8b561594ff49": {
178
+ "compensate": 1.035,
179
+ "mdx_dim_f_set": 3072,
180
+ "mdx_dim_t_set": 8,
181
+ "mdx_n_fft_scale_set": 7680,
182
+ "primary_stem": "Instrumental"
183
+ },
184
+ "b06327a00d5e5fbc7d96e1781bbdb596": {
185
+ "compensate": 1.035,
186
+ "mdx_dim_f_set": 3072,
187
+ "mdx_dim_t_set": 8,
188
+ "mdx_n_fft_scale_set": 6144,
189
+ "primary_stem": "Instrumental"
190
+ },
191
+ "94ff780b977d3ca07c7a343dab2e25dd": {
192
+ "compensate": 1.039,
193
+ "mdx_dim_f_set": 3072,
194
+ "mdx_dim_t_set": 8,
195
+ "mdx_n_fft_scale_set": 6144,
196
+ "primary_stem": "Instrumental"
197
+ },
198
+ "73492b58195c3b52d34590d5474452f6": {
199
+ "compensate": 1.043,
200
+ "mdx_dim_f_set": 3072,
201
+ "mdx_dim_t_set": 8,
202
+ "mdx_n_fft_scale_set": 7680,
203
+ "primary_stem": "Vocals"
204
+ },
205
+ "970b3f9492014d18fefeedfe4773cb42": {
206
+ "compensate": 1.009,
207
+ "mdx_dim_f_set": 3072,
208
+ "mdx_dim_t_set": 8,
209
+ "mdx_n_fft_scale_set": 7680,
210
+ "primary_stem": "Vocals"
211
+ },
212
+ "1d64a6d2c30f709b8c9b4ce1366d96ee": {
213
+ "compensate": 1.035,
214
+ "mdx_dim_f_set": 2048,
215
+ "mdx_dim_t_set": 8,
216
+ "mdx_n_fft_scale_set": 5120,
217
+ "primary_stem": "Instrumental"
218
+ },
219
+ "203f2a3955221b64df85a41af87cf8f0": {
220
+ "compensate": 1.035,
221
+ "mdx_dim_f_set": 3072,
222
+ "mdx_dim_t_set": 8,
223
+ "mdx_n_fft_scale_set": 6144,
224
+ "primary_stem": "Instrumental"
225
+ },
226
+ "291c2049608edb52648b96e27eb80e95": {
227
+ "compensate": 1.035,
228
+ "mdx_dim_f_set": 3072,
229
+ "mdx_dim_t_set": 8,
230
+ "mdx_n_fft_scale_set": 6144,
231
+ "primary_stem": "Instrumental"
232
+ },
233
+ "ead8d05dab12ec571d67549b3aab03fc": {
234
+ "compensate": 1.035,
235
+ "mdx_dim_f_set": 3072,
236
+ "mdx_dim_t_set": 8,
237
+ "mdx_n_fft_scale_set": 6144,
238
+ "primary_stem": "Instrumental"
239
+ },
240
+ "cc63408db3d80b4d85b0287d1d7c9632": {
241
+ "compensate": 1.033,
242
+ "mdx_dim_f_set": 3072,
243
+ "mdx_dim_t_set": 8,
244
+ "mdx_n_fft_scale_set": 6144,
245
+ "primary_stem": "Instrumental"
246
+ },
247
+ "cd5b2989ad863f116c855db1dfe24e39": {
248
+ "compensate": 1.035,
249
+ "mdx_dim_f_set": 3072,
250
+ "mdx_dim_t_set": 9,
251
+ "mdx_n_fft_scale_set": 6144,
252
+ "primary_stem": "Other"
253
+ },
254
+ "55657dd70583b0fedfba5f67df11d711": {
255
+ "compensate": 1.022,
256
+ "mdx_dim_f_set": 3072,
257
+ "mdx_dim_t_set": 8,
258
+ "mdx_n_fft_scale_set": 6144,
259
+ "primary_stem": "Instrumental"
260
+ },
261
+ "b6bccda408a436db8500083ef3491e8b": {
262
+ "compensate": 1.02,
263
+ "mdx_dim_f_set": 3072,
264
+ "mdx_dim_t_set": 8,
265
+ "mdx_n_fft_scale_set": 7680,
266
+ "primary_stem": "Instrumental"
267
+ },
268
+ "8a88db95c7fb5dbe6a095ff2ffb428b1": {
269
+ "compensate": 1.026,
270
+ "mdx_dim_f_set": 2048,
271
+ "mdx_dim_t_set": 8,
272
+ "mdx_n_fft_scale_set": 5120,
273
+ "primary_stem": "Instrumental"
274
+ },
275
+ "b78da4afc6512f98e4756f5977f5c6b9": {
276
+ "compensate": 1.021,
277
+ "mdx_dim_f_set": 3072,
278
+ "mdx_dim_t_set": 8,
279
+ "mdx_n_fft_scale_set": 7680,
280
+ "primary_stem": "Instrumental"
281
+ },
282
+ "77d07b2667ddf05b9e3175941b4454a0": {
283
+ "compensate": 1.021,
284
+ "mdx_dim_f_set": 3072,
285
+ "mdx_dim_t_set": 8,
286
+ "mdx_n_fft_scale_set": 7680,
287
+ "primary_stem": "Vocals"
288
+ },
289
+ "2154254ee89b2945b97a7efed6e88820": {
290
+ "config_yaml": "model_2_stem_061321.yaml"
291
+ },
292
+ "063aadd735d58150722926dcbf5852a9": {
293
+ "config_yaml": "model_2_stem_061321.yaml"
294
+ },
295
+ "fe96801369f6a148df2720f5ced88c19": {
296
+ "config_yaml": "model3.yaml"
297
+ },
298
+ "02e8b226f85fb566e5db894b9931c640": {
299
+ "config_yaml": "model2.yaml"
300
+ },
301
+ "e3de6d861635ab9c1d766149edd680d6": {
302
+ "config_yaml": "model1.yaml"
303
+ },
304
+ "3f2936c554ab73ce2e396d54636bd373": {
305
+ "config_yaml": "modelB.yaml"
306
+ },
307
+ "890d0f6f82d7574bca741a9e8bcb8168": {
308
+ "config_yaml": "modelB.yaml"
309
+ },
310
+ "63a3cb8c37c474681049be4ad1ba8815": {
311
+ "config_yaml": "modelB.yaml"
312
+ },
313
+ "a7fc5d719743c7fd6b61bd2b4d48b9f0": {
314
+ "config_yaml": "modelA.yaml"
315
+ },
316
+ "3567f3dee6e77bf366fcb1c7b8bc3745": {
317
+ "config_yaml": "modelA.yaml"
318
+ },
319
+ "a28f4d717bd0d34cd2ff7a3b0a3d065e": {
320
+ "config_yaml": "modelA.yaml"
321
+ },
322
+ "c9971a18da20911822593dc81caa8be9": {
323
+ "config_yaml": "sndfx.yaml"
324
+ },
325
+ "57d94d5ed705460d21c75a5ac829a605": {
326
+ "config_yaml": "sndfx.yaml"
327
+ },
328
+ "e7a25f8764f25a52c1b96c4946e66ba2": {
329
+ "config_yaml": "sndfx.yaml"
330
+ },
331
+ "104081d24e37217086ce5fde09147ee1": {
332
+ "config_yaml": "model_2_stem_061321.yaml"
333
+ },
334
+ "1e6165b601539f38d0a9330f3facffeb": {
335
+ "config_yaml": "model_2_stem_061321.yaml"
336
+ },
337
+ "fe0108464ce0d8271be5ab810891bd7c": {
338
+ "config_yaml": "model_2_stem_full_band.yaml"
339
+ }
340
+ }
requirements.txt ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ deemix
2
+ fairseq==0.12.2
3
+ faiss-cpu==1.7.3
4
+ ffmpeg-python>=0.2.0
5
+ gradio==4.29.0
6
+ lib==4.0.0
7
+ librosa==0.10
8
+ numpy==1.23.5
9
+ onnxruntime_gpu
10
+ praat-parselmouth>=0.4.2
11
+ pedalboard==0.7.7
12
+ pydub==0.25.1
13
+ pyworld==0.3.4
14
+ Requests==2.31.0
15
+ scipy>=1.13.0,<2.0.0
16
+ soundfile==0.12.1
17
+ --extra-index-url https://download.pytorch.org/whl/cu118
18
+ torch==2.0.1
19
+ torchvision==0.15.2
20
+ torchaudio==2.0.2
21
+ torchcrepe==0.0.23
22
+ tqdm==4.65.0
23
+ yt_dlp==2023.7.6
24
+ sox==1.4.1
25
+ audio-separator[gpu]==0.17.5
26
+ gdown==5.2.0
src/configs/32k.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "seed": 1234,
5
+ "epochs": 20000,
6
+ "learning_rate": 1e-4,
7
+ "betas": [0.8, 0.99],
8
+ "eps": 1e-9,
9
+ "batch_size": 4,
10
+ "fp16_run": false,
11
+ "lr_decay": 0.999875,
12
+ "segment_size": 12800,
13
+ "init_lr_ratio": 1,
14
+ "warmup_epochs": 0,
15
+ "c_mel": 45,
16
+ "c_kl": 1.0
17
+ },
18
+ "data": {
19
+ "max_wav_value": 32768.0,
20
+ "sampling_rate": 32000,
21
+ "filter_length": 1024,
22
+ "hop_length": 320,
23
+ "win_length": 1024,
24
+ "n_mel_channels": 80,
25
+ "mel_fmin": 0.0,
26
+ "mel_fmax": null
27
+ },
28
+ "model": {
29
+ "inter_channels": 192,
30
+ "hidden_channels": 192,
31
+ "filter_channels": 768,
32
+ "n_heads": 2,
33
+ "n_layers": 6,
34
+ "kernel_size": 3,
35
+ "p_dropout": 0,
36
+ "resblock": "1",
37
+ "resblock_kernel_sizes": [3,7,11],
38
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
+ "upsample_rates": [10,4,2,2,2],
40
+ "upsample_initial_channel": 512,
41
+ "upsample_kernel_sizes": [16,16,4,4,4],
42
+ "use_spectral_norm": false,
43
+ "gin_channels": 256,
44
+ "spk_embed_dim": 109
45
+ }
46
+ }
src/configs/32k_v2.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "seed": 1234,
5
+ "epochs": 20000,
6
+ "learning_rate": 1e-4,
7
+ "betas": [0.8, 0.99],
8
+ "eps": 1e-9,
9
+ "batch_size": 4,
10
+ "fp16_run": true,
11
+ "lr_decay": 0.999875,
12
+ "segment_size": 12800,
13
+ "init_lr_ratio": 1,
14
+ "warmup_epochs": 0,
15
+ "c_mel": 45,
16
+ "c_kl": 1.0
17
+ },
18
+ "data": {
19
+ "max_wav_value": 32768.0,
20
+ "sampling_rate": 32000,
21
+ "filter_length": 1024,
22
+ "hop_length": 320,
23
+ "win_length": 1024,
24
+ "n_mel_channels": 80,
25
+ "mel_fmin": 0.0,
26
+ "mel_fmax": null
27
+ },
28
+ "model": {
29
+ "inter_channels": 192,
30
+ "hidden_channels": 192,
31
+ "filter_channels": 768,
32
+ "n_heads": 2,
33
+ "n_layers": 6,
34
+ "kernel_size": 3,
35
+ "p_dropout": 0,
36
+ "resblock": "1",
37
+ "resblock_kernel_sizes": [3,7,11],
38
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
+ "upsample_rates": [10,8,2,2],
40
+ "upsample_initial_channel": 512,
41
+ "upsample_kernel_sizes": [20,16,4,4],
42
+ "use_spectral_norm": false,
43
+ "gin_channels": 256,
44
+ "spk_embed_dim": 109
45
+ }
46
+ }
src/configs/40k.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "seed": 1234,
5
+ "epochs": 20000,
6
+ "learning_rate": 1e-4,
7
+ "betas": [0.8, 0.99],
8
+ "eps": 1e-9,
9
+ "batch_size": 4,
10
+ "fp16_run": false,
11
+ "lr_decay": 0.999875,
12
+ "segment_size": 12800,
13
+ "init_lr_ratio": 1,
14
+ "warmup_epochs": 0,
15
+ "c_mel": 45,
16
+ "c_kl": 1.0
17
+ },
18
+ "data": {
19
+ "max_wav_value": 32768.0,
20
+ "sampling_rate": 40000,
21
+ "filter_length": 2048,
22
+ "hop_length": 400,
23
+ "win_length": 2048,
24
+ "n_mel_channels": 125,
25
+ "mel_fmin": 0.0,
26
+ "mel_fmax": null
27
+ },
28
+ "model": {
29
+ "inter_channels": 192,
30
+ "hidden_channels": 192,
31
+ "filter_channels": 768,
32
+ "n_heads": 2,
33
+ "n_layers": 6,
34
+ "kernel_size": 3,
35
+ "p_dropout": 0,
36
+ "resblock": "1",
37
+ "resblock_kernel_sizes": [3,7,11],
38
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
+ "upsample_rates": [10,10,2,2],
40
+ "upsample_initial_channel": 512,
41
+ "upsample_kernel_sizes": [16,16,4,4],
42
+ "use_spectral_norm": false,
43
+ "gin_channels": 256,
44
+ "spk_embed_dim": 109
45
+ }
46
+ }
src/configs/48k.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "seed": 1234,
5
+ "epochs": 20000,
6
+ "learning_rate": 1e-4,
7
+ "betas": [0.8, 0.99],
8
+ "eps": 1e-9,
9
+ "batch_size": 4,
10
+ "fp16_run": false,
11
+ "lr_decay": 0.999875,
12
+ "segment_size": 11520,
13
+ "init_lr_ratio": 1,
14
+ "warmup_epochs": 0,
15
+ "c_mel": 45,
16
+ "c_kl": 1.0
17
+ },
18
+ "data": {
19
+ "max_wav_value": 32768.0,
20
+ "sampling_rate": 48000,
21
+ "filter_length": 2048,
22
+ "hop_length": 480,
23
+ "win_length": 2048,
24
+ "n_mel_channels": 128,
25
+ "mel_fmin": 0.0,
26
+ "mel_fmax": null
27
+ },
28
+ "model": {
29
+ "inter_channels": 192,
30
+ "hidden_channels": 192,
31
+ "filter_channels": 768,
32
+ "n_heads": 2,
33
+ "n_layers": 6,
34
+ "kernel_size": 3,
35
+ "p_dropout": 0,
36
+ "resblock": "1",
37
+ "resblock_kernel_sizes": [3,7,11],
38
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
+ "upsample_rates": [10,6,2,2,2],
40
+ "upsample_initial_channel": 512,
41
+ "upsample_kernel_sizes": [16,16,4,4,4],
42
+ "use_spectral_norm": false,
43
+ "gin_channels": 256,
44
+ "spk_embed_dim": 109
45
+ }
46
+ }
src/configs/48k_v2.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "seed": 1234,
5
+ "epochs": 20000,
6
+ "learning_rate": 1e-4,
7
+ "betas": [0.8, 0.99],
8
+ "eps": 1e-9,
9
+ "batch_size": 4,
10
+ "fp16_run": true,
11
+ "lr_decay": 0.999875,
12
+ "segment_size": 17280,
13
+ "init_lr_ratio": 1,
14
+ "warmup_epochs": 0,
15
+ "c_mel": 45,
16
+ "c_kl": 1.0
17
+ },
18
+ "data": {
19
+ "max_wav_value": 32768.0,
20
+ "sampling_rate": 48000,
21
+ "filter_length": 2048,
22
+ "hop_length": 480,
23
+ "win_length": 2048,
24
+ "n_mel_channels": 128,
25
+ "mel_fmin": 0.0,
26
+ "mel_fmax": null
27
+ },
28
+ "model": {
29
+ "inter_channels": 192,
30
+ "hidden_channels": 192,
31
+ "filter_channels": 768,
32
+ "n_heads": 2,
33
+ "n_layers": 6,
34
+ "kernel_size": 3,
35
+ "p_dropout": 0,
36
+ "resblock": "1",
37
+ "resblock_kernel_sizes": [3,7,11],
38
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
+ "upsample_rates": [12,10,2,2],
40
+ "upsample_initial_channel": 512,
41
+ "upsample_kernel_sizes": [24,20,4,4],
42
+ "use_spectral_norm": false,
43
+ "gin_channels": 256,
44
+ "spk_embed_dim": 109
45
+ }
46
+ }
src/download_models.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import requests
3
+
4
+ MDX_DOWNLOAD_LINK = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/'
5
+ RVC_DOWNLOAD_LINK = 'https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/'
6
+
7
+ BASE_DIR = Path(__file__).resolve().parent.parent
8
+ mdxnet_models_dir = BASE_DIR / 'mdxnet_models'
9
+ rvc_models_dir = BASE_DIR / 'rvc_models'
10
+
11
+
12
+ def dl_model(link, model_name, dir_name):
13
+ with requests.get(f'{link}{model_name}') as r:
14
+ r.raise_for_status()
15
+ with open(dir_name / model_name, 'wb') as f:
16
+ for chunk in r.iter_content(chunk_size=8192):
17
+ f.write(chunk)
18
+
19
+
20
+ if __name__ == '__main__':
21
+ mdx_model_names = ['UVR-MDX-NET-Voc_FT.onnx', 'UVR_MDXNET_KARA_2.onnx', 'Reverb_HQ_By_FoxJoy.onnx', 'Kim_Vocal_2.onnx']
22
+ for model in mdx_model_names:
23
+ print(f'Downloading {model}...')
24
+ dl_model(MDX_DOWNLOAD_LINK, model, mdxnet_models_dir)
25
+
26
+ rvc_model_names = ['hubert_base.pt', 'rmvpe.pt']
27
+ for model in rvc_model_names:
28
+ print(f'Downloading {model}...')
29
+ dl_model(RVC_DOWNLOAD_LINK, model, rvc_models_dir)
30
+
31
+ print('All models downloaded!')
src/infer_pack/attentions.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from src.infer_pack import commons
9
+ from src.infer_pack import modules
10
+ from src.infer_pack.modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(
15
+ self,
16
+ hidden_channels,
17
+ filter_channels,
18
+ n_heads,
19
+ n_layers,
20
+ kernel_size=1,
21
+ p_dropout=0.0,
22
+ window_size=10,
23
+ **kwargs
24
+ ):
25
+ super().__init__()
26
+ self.hidden_channels = hidden_channels
27
+ self.filter_channels = filter_channels
28
+ self.n_heads = n_heads
29
+ self.n_layers = n_layers
30
+ self.kernel_size = kernel_size
31
+ self.p_dropout = p_dropout
32
+ self.window_size = window_size
33
+
34
+ self.drop = nn.Dropout(p_dropout)
35
+ self.attn_layers = nn.ModuleList()
36
+ self.norm_layers_1 = nn.ModuleList()
37
+ self.ffn_layers = nn.ModuleList()
38
+ self.norm_layers_2 = nn.ModuleList()
39
+ for i in range(self.n_layers):
40
+ self.attn_layers.append(
41
+ MultiHeadAttention(
42
+ hidden_channels,
43
+ hidden_channels,
44
+ n_heads,
45
+ p_dropout=p_dropout,
46
+ window_size=window_size,
47
+ )
48
+ )
49
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
50
+ self.ffn_layers.append(
51
+ FFN(
52
+ hidden_channels,
53
+ hidden_channels,
54
+ filter_channels,
55
+ kernel_size,
56
+ p_dropout=p_dropout,
57
+ )
58
+ )
59
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
60
+
61
+ def forward(self, x, x_mask):
62
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
63
+ x = x * x_mask
64
+ for i in range(self.n_layers):
65
+ y = self.attn_layers[i](x, x, attn_mask)
66
+ y = self.drop(y)
67
+ x = self.norm_layers_1[i](x + y)
68
+
69
+ y = self.ffn_layers[i](x, x_mask)
70
+ y = self.drop(y)
71
+ x = self.norm_layers_2[i](x + y)
72
+ x = x * x_mask
73
+ return x
74
+
75
+
76
+ class Decoder(nn.Module):
77
+ def __init__(
78
+ self,
79
+ hidden_channels,
80
+ filter_channels,
81
+ n_heads,
82
+ n_layers,
83
+ kernel_size=1,
84
+ p_dropout=0.0,
85
+ proximal_bias=False,
86
+ proximal_init=True,
87
+ **kwargs
88
+ ):
89
+ super().__init__()
90
+ self.hidden_channels = hidden_channels
91
+ self.filter_channels = filter_channels
92
+ self.n_heads = n_heads
93
+ self.n_layers = n_layers
94
+ self.kernel_size = kernel_size
95
+ self.p_dropout = p_dropout
96
+ self.proximal_bias = proximal_bias
97
+ self.proximal_init = proximal_init
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.self_attn_layers = nn.ModuleList()
101
+ self.norm_layers_0 = nn.ModuleList()
102
+ self.encdec_attn_layers = nn.ModuleList()
103
+ self.norm_layers_1 = nn.ModuleList()
104
+ self.ffn_layers = nn.ModuleList()
105
+ self.norm_layers_2 = nn.ModuleList()
106
+ for i in range(self.n_layers):
107
+ self.self_attn_layers.append(
108
+ MultiHeadAttention(
109
+ hidden_channels,
110
+ hidden_channels,
111
+ n_heads,
112
+ p_dropout=p_dropout,
113
+ proximal_bias=proximal_bias,
114
+ proximal_init=proximal_init,
115
+ )
116
+ )
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(
119
+ MultiHeadAttention(
120
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
121
+ )
122
+ )
123
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
124
+ self.ffn_layers.append(
125
+ FFN(
126
+ hidden_channels,
127
+ hidden_channels,
128
+ filter_channels,
129
+ kernel_size,
130
+ p_dropout=p_dropout,
131
+ causal=True,
132
+ )
133
+ )
134
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
135
+
136
+ def forward(self, x, x_mask, h, h_mask):
137
+ """
138
+ x: decoder input
139
+ h: encoder output
140
+ """
141
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
142
+ device=x.device, dtype=x.dtype
143
+ )
144
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
145
+ x = x * x_mask
146
+ for i in range(self.n_layers):
147
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
148
+ y = self.drop(y)
149
+ x = self.norm_layers_0[i](x + y)
150
+
151
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
152
+ y = self.drop(y)
153
+ x = self.norm_layers_1[i](x + y)
154
+
155
+ y = self.ffn_layers[i](x, x_mask)
156
+ y = self.drop(y)
157
+ x = self.norm_layers_2[i](x + y)
158
+ x = x * x_mask
159
+ return x
160
+
161
+
162
+ class MultiHeadAttention(nn.Module):
163
+ def __init__(
164
+ self,
165
+ channels,
166
+ out_channels,
167
+ n_heads,
168
+ p_dropout=0.0,
169
+ window_size=None,
170
+ heads_share=True,
171
+ block_length=None,
172
+ proximal_bias=False,
173
+ proximal_init=False,
174
+ ):
175
+ super().__init__()
176
+ assert channels % n_heads == 0
177
+
178
+ self.channels = channels
179
+ self.out_channels = out_channels
180
+ self.n_heads = n_heads
181
+ self.p_dropout = p_dropout
182
+ self.window_size = window_size
183
+ self.heads_share = heads_share
184
+ self.block_length = block_length
185
+ self.proximal_bias = proximal_bias
186
+ self.proximal_init = proximal_init
187
+ self.attn = None
188
+
189
+ self.k_channels = channels // n_heads
190
+ self.conv_q = nn.Conv1d(channels, channels, 1)
191
+ self.conv_k = nn.Conv1d(channels, channels, 1)
192
+ self.conv_v = nn.Conv1d(channels, channels, 1)
193
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
194
+ self.drop = nn.Dropout(p_dropout)
195
+
196
+ if window_size is not None:
197
+ n_heads_rel = 1 if heads_share else n_heads
198
+ rel_stddev = self.k_channels**-0.5
199
+ self.emb_rel_k = nn.Parameter(
200
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
201
+ * rel_stddev
202
+ )
203
+ self.emb_rel_v = nn.Parameter(
204
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
205
+ * rel_stddev
206
+ )
207
+
208
+ nn.init.xavier_uniform_(self.conv_q.weight)
209
+ nn.init.xavier_uniform_(self.conv_k.weight)
210
+ nn.init.xavier_uniform_(self.conv_v.weight)
211
+ if proximal_init:
212
+ with torch.no_grad():
213
+ self.conv_k.weight.copy_(self.conv_q.weight)
214
+ self.conv_k.bias.copy_(self.conv_q.bias)
215
+
216
+ def forward(self, x, c, attn_mask=None):
217
+ q = self.conv_q(x)
218
+ k = self.conv_k(c)
219
+ v = self.conv_v(c)
220
+
221
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
222
+
223
+ x = self.conv_o(x)
224
+ return x
225
+
226
+ def attention(self, query, key, value, mask=None):
227
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
228
+ b, d, t_s, t_t = (*key.size(), query.size(2))
229
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
230
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
231
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
232
+
233
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
234
+ if self.window_size is not None:
235
+ assert (
236
+ t_s == t_t
237
+ ), "Relative attention is only available for self-attention."
238
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
239
+ rel_logits = self._matmul_with_relative_keys(
240
+ query / math.sqrt(self.k_channels), key_relative_embeddings
241
+ )
242
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
243
+ scores = scores + scores_local
244
+ if self.proximal_bias:
245
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
246
+ scores = scores + self._attention_bias_proximal(t_s).to(
247
+ device=scores.device, dtype=scores.dtype
248
+ )
249
+ if mask is not None:
250
+ scores = scores.masked_fill(mask == 0, -1e4)
251
+ if self.block_length is not None:
252
+ assert (
253
+ t_s == t_t
254
+ ), "Local attention is only available for self-attention."
255
+ block_mask = (
256
+ torch.ones_like(scores)
257
+ .triu(-self.block_length)
258
+ .tril(self.block_length)
259
+ )
260
+ scores = scores.masked_fill(block_mask == 0, -1e4)
261
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
262
+ p_attn = self.drop(p_attn)
263
+ output = torch.matmul(p_attn, value)
264
+ if self.window_size is not None:
265
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
266
+ value_relative_embeddings = self._get_relative_embeddings(
267
+ self.emb_rel_v, t_s
268
+ )
269
+ output = output + self._matmul_with_relative_values(
270
+ relative_weights, value_relative_embeddings
271
+ )
272
+ output = (
273
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
274
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
275
+ return output, p_attn
276
+
277
+ def _matmul_with_relative_values(self, x, y):
278
+ """
279
+ x: [b, h, l, m]
280
+ y: [h or 1, m, d]
281
+ ret: [b, h, l, d]
282
+ """
283
+ ret = torch.matmul(x, y.unsqueeze(0))
284
+ return ret
285
+
286
+ def _matmul_with_relative_keys(self, x, y):
287
+ """
288
+ x: [b, h, l, d]
289
+ y: [h or 1, m, d]
290
+ ret: [b, h, l, m]
291
+ """
292
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
293
+ return ret
294
+
295
+ def _get_relative_embeddings(self, relative_embeddings, length):
296
+ max_relative_position = 2 * self.window_size + 1
297
+ # Pad first before slice to avoid using cond ops.
298
+ pad_length = max(length - (self.window_size + 1), 0)
299
+ slice_start_position = max((self.window_size + 1) - length, 0)
300
+ slice_end_position = slice_start_position + 2 * length - 1
301
+ if pad_length > 0:
302
+ padded_relative_embeddings = F.pad(
303
+ relative_embeddings,
304
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
305
+ )
306
+ else:
307
+ padded_relative_embeddings = relative_embeddings
308
+ used_relative_embeddings = padded_relative_embeddings[
309
+ :, slice_start_position:slice_end_position
310
+ ]
311
+ return used_relative_embeddings
312
+
313
+ def _relative_position_to_absolute_position(self, x):
314
+ """
315
+ x: [b, h, l, 2*l-1]
316
+ ret: [b, h, l, l]
317
+ """
318
+ batch, heads, length, _ = x.size()
319
+ # Concat columns of pad to shift from relative to absolute indexing.
320
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
321
+
322
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
323
+ x_flat = x.view([batch, heads, length * 2 * length])
324
+ x_flat = F.pad(
325
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
326
+ )
327
+
328
+ # Reshape and slice out the padded elements.
329
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
330
+ :, :, :length, length - 1 :
331
+ ]
332
+ return x_final
333
+
334
+ def _absolute_position_to_relative_position(self, x):
335
+ """
336
+ x: [b, h, l, l]
337
+ ret: [b, h, l, 2*l-1]
338
+ """
339
+ batch, heads, length, _ = x.size()
340
+ # padd along column
341
+ x = F.pad(
342
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
343
+ )
344
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
345
+ # add 0's in the beginning that will skew the elements after reshape
346
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
347
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
348
+ return x_final
349
+
350
+ def _attention_bias_proximal(self, length):
351
+ """Bias for self-attention to encourage attention to close positions.
352
+ Args:
353
+ length: an integer scalar.
354
+ Returns:
355
+ a Tensor with shape [1, 1, length, length]
356
+ """
357
+ r = torch.arange(length, dtype=torch.float32)
358
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
359
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
360
+
361
+
362
+ class FFN(nn.Module):
363
+ def __init__(
364
+ self,
365
+ in_channels,
366
+ out_channels,
367
+ filter_channels,
368
+ kernel_size,
369
+ p_dropout=0.0,
370
+ activation=None,
371
+ causal=False,
372
+ ):
373
+ super().__init__()
374
+ self.in_channels = in_channels
375
+ self.out_channels = out_channels
376
+ self.filter_channels = filter_channels
377
+ self.kernel_size = kernel_size
378
+ self.p_dropout = p_dropout
379
+ self.activation = activation
380
+ self.causal = causal
381
+
382
+ if causal:
383
+ self.padding = self._causal_padding
384
+ else:
385
+ self.padding = self._same_padding
386
+
387
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
388
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
389
+ self.drop = nn.Dropout(p_dropout)
390
+
391
+ def forward(self, x, x_mask):
392
+ x = self.conv_1(self.padding(x * x_mask))
393
+ if self.activation == "gelu":
394
+ x = x * torch.sigmoid(1.702 * x)
395
+ else:
396
+ x = torch.relu(x)
397
+ x = self.drop(x)
398
+ x = self.conv_2(self.padding(x * x_mask))
399
+ return x * x_mask
400
+
401
+ def _causal_padding(self, x):
402
+ if self.kernel_size == 1:
403
+ return x
404
+ pad_l = self.kernel_size - 1
405
+ pad_r = 0
406
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
407
+ x = F.pad(x, commons.convert_pad_shape(padding))
408
+ return x
409
+
410
+ def _same_padding(self, x):
411
+ if self.kernel_size == 1:
412
+ return x
413
+ pad_l = (self.kernel_size - 1) // 2
414
+ pad_r = self.kernel_size // 2
415
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
416
+ x = F.pad(x, commons.convert_pad_shape(padding))
417
+ return x
src/infer_pack/commons.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size * dilation - dilation) / 2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
25
+ """KL(P||Q)"""
26
+ kl = (logs_q - logs_p) - 0.5
27
+ kl += (
28
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
29
+ )
30
+ return kl
31
+
32
+
33
+ def rand_gumbel(shape):
34
+ """Sample from the Gumbel distribution, protect from overflows."""
35
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
36
+ return -torch.log(-torch.log(uniform_samples))
37
+
38
+
39
+ def rand_gumbel_like(x):
40
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
41
+ return g
42
+
43
+
44
+ def slice_segments(x, ids_str, segment_size=4):
45
+ ret = torch.zeros_like(x[:, :, :segment_size])
46
+ for i in range(x.size(0)):
47
+ idx_str = ids_str[i]
48
+ idx_end = idx_str + segment_size
49
+ ret[i] = x[i, :, idx_str:idx_end]
50
+ return ret
51
+
52
+
53
+ def slice_segments2(x, ids_str, segment_size=4):
54
+ ret = torch.zeros_like(x[:, :segment_size])
55
+ for i in range(x.size(0)):
56
+ idx_str = ids_str[i]
57
+ idx_end = idx_str + segment_size
58
+ ret[i] = x[i, idx_str:idx_end]
59
+ return ret
60
+
61
+
62
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
63
+ b, d, t = x.size()
64
+ if x_lengths is None:
65
+ x_lengths = t
66
+ ids_str_max = x_lengths - segment_size + 1
67
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
68
+ ret = slice_segments(x, ids_str, segment_size)
69
+ return ret, ids_str
70
+
71
+
72
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
73
+ position = torch.arange(length, dtype=torch.float)
74
+ num_timescales = channels // 2
75
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
76
+ num_timescales - 1
77
+ )
78
+ inv_timescales = min_timescale * torch.exp(
79
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
80
+ )
81
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
82
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
83
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
84
+ signal = signal.view(1, channels, length)
85
+ return signal
86
+
87
+
88
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
89
+ b, channels, length = x.size()
90
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
+ return x + signal.to(dtype=x.dtype, device=x.device)
92
+
93
+
94
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
95
+ b, channels, length = x.size()
96
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
97
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
98
+
99
+
100
+ def subsequent_mask(length):
101
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
102
+ return mask
103
+
104
+
105
+ @torch.jit.script
106
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
107
+ n_channels_int = n_channels[0]
108
+ in_act = input_a + input_b
109
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
110
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
111
+ acts = t_act * s_act
112
+ return acts
113
+
114
+
115
+ def convert_pad_shape(pad_shape):
116
+ l = pad_shape[::-1]
117
+ pad_shape = [item for sublist in l for item in sublist]
118
+ return pad_shape
119
+
120
+
121
+ def shift_1d(x):
122
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
123
+ return x
124
+
125
+
126
+ def sequence_mask(length, max_length=None):
127
+ if max_length is None:
128
+ max_length = length.max()
129
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
130
+ return x.unsqueeze(0) < length.unsqueeze(1)
131
+
132
+
133
+ def generate_path(duration, mask):
134
+ """
135
+ duration: [b, 1, t_x]
136
+ mask: [b, 1, t_y, t_x]
137
+ """
138
+ device = duration.device
139
+
140
+ b, _, t_y, t_x = mask.shape
141
+ cum_duration = torch.cumsum(duration, -1)
142
+
143
+ cum_duration_flat = cum_duration.view(b * t_x)
144
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
145
+ path = path.view(b, t_x, t_y)
146
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
147
+ path = path.unsqueeze(1).transpose(2, 3) * mask
148
+ return path
149
+
150
+
151
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
152
+ if isinstance(parameters, torch.Tensor):
153
+ parameters = [parameters]
154
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
155
+ norm_type = float(norm_type)
156
+ if clip_value is not None:
157
+ clip_value = float(clip_value)
158
+
159
+ total_norm = 0
160
+ for p in parameters:
161
+ param_norm = p.grad.data.norm(norm_type)
162
+ total_norm += param_norm.item() ** norm_type
163
+ if clip_value is not None:
164
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
165
+ total_norm = total_norm ** (1.0 / norm_type)
166
+ return total_norm
src/infer_pack/models.py ADDED
@@ -0,0 +1,1124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from src.infer_pack import modules
7
+ from src.infer_pack import attentions
8
+ from src.infer_pack import commons
9
+ from src.infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from src.infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from src.infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ return uv
319
+
320
+ def forward(self, f0, upp):
321
+ """sine_tensor, uv = forward(f0)
322
+ input F0: tensor(batchsize=1, length, dim=1)
323
+ f0 for unvoiced steps should be 0
324
+ output sine_tensor: tensor(batchsize=1, length, dim)
325
+ output uv: tensor(batchsize=1, length, 1)
326
+ """
327
+ with torch.no_grad():
328
+ f0 = f0[:, None].transpose(1, 2)
329
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
+ # fundamental component
331
+ f0_buf[:, :, 0] = f0[:, :, 0]
332
+ for idx in np.arange(self.harmonic_num):
333
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
+ idx + 2
335
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
+ rand_ini = torch.rand(
338
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
+ )
340
+ rand_ini[:, 0] = 0
341
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
+ tmp_over_one *= upp
344
+ tmp_over_one = F.interpolate(
345
+ tmp_over_one.transpose(2, 1),
346
+ scale_factor=upp,
347
+ mode="linear",
348
+ align_corners=True,
349
+ ).transpose(2, 1)
350
+ rad_values = F.interpolate(
351
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
+ ).transpose(
353
+ 2, 1
354
+ ) #######
355
+ tmp_over_one %= 1
356
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
+ cumsum_shift = torch.zeros_like(rad_values)
358
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
+ sine_waves = torch.sin(
360
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
+ )
362
+ sine_waves = sine_waves * self.sine_amp
363
+ uv = self._f02uv(f0)
364
+ uv = F.interpolate(
365
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
+ ).transpose(2, 1)
367
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
+ noise = noise_amp * torch.randn_like(sine_waves)
369
+ sine_waves = sine_waves * uv + noise
370
+ return sine_waves, uv, noise
371
+
372
+
373
+ class SourceModuleHnNSF(torch.nn.Module):
374
+ """SourceModule for hn-nsf
375
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
+ add_noise_std=0.003, voiced_threshod=0)
377
+ sampling_rate: sampling_rate in Hz
378
+ harmonic_num: number of harmonic above F0 (default: 0)
379
+ sine_amp: amplitude of sine source signal (default: 0.1)
380
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
381
+ note that amplitude of noise in unvoiced is decided
382
+ by sine_amp
383
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
384
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
+ F0_sampled (batchsize, length, 1)
386
+ Sine_source (batchsize, length, 1)
387
+ noise_source (batchsize, length 1)
388
+ uv (batchsize, length, 1)
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ sampling_rate,
394
+ harmonic_num=0,
395
+ sine_amp=0.1,
396
+ add_noise_std=0.003,
397
+ voiced_threshod=0,
398
+ is_half=True,
399
+ ):
400
+ super(SourceModuleHnNSF, self).__init__()
401
+
402
+ self.sine_amp = sine_amp
403
+ self.noise_std = add_noise_std
404
+ self.is_half = is_half
405
+ # to produce sine waveforms
406
+ self.l_sin_gen = SineGen(
407
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
+ )
409
+
410
+ # to merge source harmonics into a single excitation
411
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
+ self.l_tanh = torch.nn.Tanh()
413
+
414
+ def forward(self, x, upp=None):
415
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
+ if self.is_half:
417
+ sine_wavs = sine_wavs.half()
418
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
+ return sine_merge, None, None # noise, uv
420
+
421
+
422
+ class GeneratorNSF(torch.nn.Module):
423
+ def __init__(
424
+ self,
425
+ initial_channel,
426
+ resblock,
427
+ resblock_kernel_sizes,
428
+ resblock_dilation_sizes,
429
+ upsample_rates,
430
+ upsample_initial_channel,
431
+ upsample_kernel_sizes,
432
+ gin_channels,
433
+ sr,
434
+ is_half=False,
435
+ ):
436
+ super(GeneratorNSF, self).__init__()
437
+ self.num_kernels = len(resblock_kernel_sizes)
438
+ self.num_upsamples = len(upsample_rates)
439
+
440
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
+ self.m_source = SourceModuleHnNSF(
442
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
443
+ )
444
+ self.noise_convs = nn.ModuleList()
445
+ self.conv_pre = Conv1d(
446
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
447
+ )
448
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
+
450
+ self.ups = nn.ModuleList()
451
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
453
+ self.ups.append(
454
+ weight_norm(
455
+ ConvTranspose1d(
456
+ upsample_initial_channel // (2**i),
457
+ upsample_initial_channel // (2 ** (i + 1)),
458
+ k,
459
+ u,
460
+ padding=(k - u) // 2,
461
+ )
462
+ )
463
+ )
464
+ if i + 1 < len(upsample_rates):
465
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
466
+ self.noise_convs.append(
467
+ Conv1d(
468
+ 1,
469
+ c_cur,
470
+ kernel_size=stride_f0 * 2,
471
+ stride=stride_f0,
472
+ padding=stride_f0 // 2,
473
+ )
474
+ )
475
+ else:
476
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
+
478
+ self.resblocks = nn.ModuleList()
479
+ for i in range(len(self.ups)):
480
+ ch = upsample_initial_channel // (2 ** (i + 1))
481
+ for j, (k, d) in enumerate(
482
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
+ ):
484
+ self.resblocks.append(resblock(ch, k, d))
485
+
486
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
+ self.ups.apply(init_weights)
488
+
489
+ if gin_channels != 0:
490
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
+
492
+ self.upp = np.prod(upsample_rates)
493
+
494
+ def forward(self, x, f0, g=None):
495
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
496
+ har_source = har_source.transpose(1, 2)
497
+ x = self.conv_pre(x)
498
+ if g is not None:
499
+ x = x + self.cond(g)
500
+
501
+ for i in range(self.num_upsamples):
502
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
+ x = self.ups[i](x)
504
+ x_source = self.noise_convs[i](har_source)
505
+ x = x + x_source
506
+ xs = None
507
+ for j in range(self.num_kernels):
508
+ if xs is None:
509
+ xs = self.resblocks[i * self.num_kernels + j](x)
510
+ else:
511
+ xs += self.resblocks[i * self.num_kernels + j](x)
512
+ x = xs / self.num_kernels
513
+ x = F.leaky_relu(x)
514
+ x = self.conv_post(x)
515
+ x = torch.tanh(x)
516
+ return x
517
+
518
+ def remove_weight_norm(self):
519
+ for l in self.ups:
520
+ remove_weight_norm(l)
521
+ for l in self.resblocks:
522
+ l.remove_weight_norm()
523
+
524
+
525
+ sr2sr = {
526
+ "32k": 32000,
527
+ "40k": 40000,
528
+ "48k": 48000,
529
+ }
530
+
531
+
532
+ class SynthesizerTrnMs256NSFsid(nn.Module):
533
+ def __init__(
534
+ self,
535
+ spec_channels,
536
+ segment_size,
537
+ inter_channels,
538
+ hidden_channels,
539
+ filter_channels,
540
+ n_heads,
541
+ n_layers,
542
+ kernel_size,
543
+ p_dropout,
544
+ resblock,
545
+ resblock_kernel_sizes,
546
+ resblock_dilation_sizes,
547
+ upsample_rates,
548
+ upsample_initial_channel,
549
+ upsample_kernel_sizes,
550
+ spk_embed_dim,
551
+ gin_channels,
552
+ sr,
553
+ **kwargs
554
+ ):
555
+ super().__init__()
556
+ if type(sr) == type("strr"):
557
+ sr = sr2sr[sr]
558
+ self.spec_channels = spec_channels
559
+ self.inter_channels = inter_channels
560
+ self.hidden_channels = hidden_channels
561
+ self.filter_channels = filter_channels
562
+ self.n_heads = n_heads
563
+ self.n_layers = n_layers
564
+ self.kernel_size = kernel_size
565
+ self.p_dropout = p_dropout
566
+ self.resblock = resblock
567
+ self.resblock_kernel_sizes = resblock_kernel_sizes
568
+ self.resblock_dilation_sizes = resblock_dilation_sizes
569
+ self.upsample_rates = upsample_rates
570
+ self.upsample_initial_channel = upsample_initial_channel
571
+ self.upsample_kernel_sizes = upsample_kernel_sizes
572
+ self.segment_size = segment_size
573
+ self.gin_channels = gin_channels
574
+ # self.hop_length = hop_length#
575
+ self.spk_embed_dim = spk_embed_dim
576
+ self.enc_p = TextEncoder256(
577
+ inter_channels,
578
+ hidden_channels,
579
+ filter_channels,
580
+ n_heads,
581
+ n_layers,
582
+ kernel_size,
583
+ p_dropout,
584
+ )
585
+ self.dec = GeneratorNSF(
586
+ inter_channels,
587
+ resblock,
588
+ resblock_kernel_sizes,
589
+ resblock_dilation_sizes,
590
+ upsample_rates,
591
+ upsample_initial_channel,
592
+ upsample_kernel_sizes,
593
+ gin_channels=gin_channels,
594
+ sr=sr,
595
+ is_half=kwargs["is_half"],
596
+ )
597
+ self.enc_q = PosteriorEncoder(
598
+ spec_channels,
599
+ inter_channels,
600
+ hidden_channels,
601
+ 5,
602
+ 1,
603
+ 16,
604
+ gin_channels=gin_channels,
605
+ )
606
+ self.flow = ResidualCouplingBlock(
607
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
608
+ )
609
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
610
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
611
+
612
+ def remove_weight_norm(self):
613
+ self.dec.remove_weight_norm()
614
+ self.flow.remove_weight_norm()
615
+ self.enc_q.remove_weight_norm()
616
+
617
+ def forward(
618
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
619
+ ): # 这里ds是id,[bs,1]
620
+ # print(1,pitch.shape)#[bs,t]
621
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
622
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
623
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
624
+ z_p = self.flow(z, y_mask, g=g)
625
+ z_slice, ids_slice = commons.rand_slice_segments(
626
+ z, y_lengths, self.segment_size
627
+ )
628
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
629
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
630
+ # print(-2,pitchf.shape,z_slice.shape)
631
+ o = self.dec(z_slice, pitchf, g=g)
632
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
+
634
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
635
+ g = self.emb_g(sid).unsqueeze(-1)
636
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
638
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
639
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
640
+ return o, x_mask, (z, z_p, m_p, logs_p)
641
+
642
+
643
+ class SynthesizerTrnMs768NSFsid(nn.Module):
644
+ def __init__(
645
+ self,
646
+ spec_channels,
647
+ segment_size,
648
+ inter_channels,
649
+ hidden_channels,
650
+ filter_channels,
651
+ n_heads,
652
+ n_layers,
653
+ kernel_size,
654
+ p_dropout,
655
+ resblock,
656
+ resblock_kernel_sizes,
657
+ resblock_dilation_sizes,
658
+ upsample_rates,
659
+ upsample_initial_channel,
660
+ upsample_kernel_sizes,
661
+ spk_embed_dim,
662
+ gin_channels,
663
+ sr,
664
+ **kwargs
665
+ ):
666
+ super().__init__()
667
+ if type(sr) == type("strr"):
668
+ sr = sr2sr[sr]
669
+ self.spec_channels = spec_channels
670
+ self.inter_channels = inter_channels
671
+ self.hidden_channels = hidden_channels
672
+ self.filter_channels = filter_channels
673
+ self.n_heads = n_heads
674
+ self.n_layers = n_layers
675
+ self.kernel_size = kernel_size
676
+ self.p_dropout = p_dropout
677
+ self.resblock = resblock
678
+ self.resblock_kernel_sizes = resblock_kernel_sizes
679
+ self.resblock_dilation_sizes = resblock_dilation_sizes
680
+ self.upsample_rates = upsample_rates
681
+ self.upsample_initial_channel = upsample_initial_channel
682
+ self.upsample_kernel_sizes = upsample_kernel_sizes
683
+ self.segment_size = segment_size
684
+ self.gin_channels = gin_channels
685
+ # self.hop_length = hop_length#
686
+ self.spk_embed_dim = spk_embed_dim
687
+ self.enc_p = TextEncoder768(
688
+ inter_channels,
689
+ hidden_channels,
690
+ filter_channels,
691
+ n_heads,
692
+ n_layers,
693
+ kernel_size,
694
+ p_dropout,
695
+ )
696
+ self.dec = GeneratorNSF(
697
+ inter_channels,
698
+ resblock,
699
+ resblock_kernel_sizes,
700
+ resblock_dilation_sizes,
701
+ upsample_rates,
702
+ upsample_initial_channel,
703
+ upsample_kernel_sizes,
704
+ gin_channels=gin_channels,
705
+ sr=sr,
706
+ is_half=kwargs["is_half"],
707
+ )
708
+ self.enc_q = PosteriorEncoder(
709
+ spec_channels,
710
+ inter_channels,
711
+ hidden_channels,
712
+ 5,
713
+ 1,
714
+ 16,
715
+ gin_channels=gin_channels,
716
+ )
717
+ self.flow = ResidualCouplingBlock(
718
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
719
+ )
720
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
721
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
722
+
723
+ def remove_weight_norm(self):
724
+ self.dec.remove_weight_norm()
725
+ self.flow.remove_weight_norm()
726
+ self.enc_q.remove_weight_norm()
727
+
728
+ def forward(
729
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
730
+ ): # 这里ds是id,[bs,1]
731
+ # print(1,pitch.shape)#[bs,t]
732
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
733
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
734
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
735
+ z_p = self.flow(z, y_mask, g=g)
736
+ z_slice, ids_slice = commons.rand_slice_segments(
737
+ z, y_lengths, self.segment_size
738
+ )
739
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
740
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
741
+ # print(-2,pitchf.shape,z_slice.shape)
742
+ o = self.dec(z_slice, pitchf, g=g)
743
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
744
+
745
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
746
+ g = self.emb_g(sid).unsqueeze(-1)
747
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
748
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
749
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
750
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
751
+ return o, x_mask, (z, z_p, m_p, logs_p)
752
+
753
+
754
+ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
755
+ def __init__(
756
+ self,
757
+ spec_channels,
758
+ segment_size,
759
+ inter_channels,
760
+ hidden_channels,
761
+ filter_channels,
762
+ n_heads,
763
+ n_layers,
764
+ kernel_size,
765
+ p_dropout,
766
+ resblock,
767
+ resblock_kernel_sizes,
768
+ resblock_dilation_sizes,
769
+ upsample_rates,
770
+ upsample_initial_channel,
771
+ upsample_kernel_sizes,
772
+ spk_embed_dim,
773
+ gin_channels,
774
+ sr=None,
775
+ **kwargs
776
+ ):
777
+ super().__init__()
778
+ self.spec_channels = spec_channels
779
+ self.inter_channels = inter_channels
780
+ self.hidden_channels = hidden_channels
781
+ self.filter_channels = filter_channels
782
+ self.n_heads = n_heads
783
+ self.n_layers = n_layers
784
+ self.kernel_size = kernel_size
785
+ self.p_dropout = p_dropout
786
+ self.resblock = resblock
787
+ self.resblock_kernel_sizes = resblock_kernel_sizes
788
+ self.resblock_dilation_sizes = resblock_dilation_sizes
789
+ self.upsample_rates = upsample_rates
790
+ self.upsample_initial_channel = upsample_initial_channel
791
+ self.upsample_kernel_sizes = upsample_kernel_sizes
792
+ self.segment_size = segment_size
793
+ self.gin_channels = gin_channels
794
+ # self.hop_length = hop_length#
795
+ self.spk_embed_dim = spk_embed_dim
796
+ self.enc_p = TextEncoder256(
797
+ inter_channels,
798
+ hidden_channels,
799
+ filter_channels,
800
+ n_heads,
801
+ n_layers,
802
+ kernel_size,
803
+ p_dropout,
804
+ f0=False,
805
+ )
806
+ self.dec = Generator(
807
+ inter_channels,
808
+ resblock,
809
+ resblock_kernel_sizes,
810
+ resblock_dilation_sizes,
811
+ upsample_rates,
812
+ upsample_initial_channel,
813
+ upsample_kernel_sizes,
814
+ gin_channels=gin_channels,
815
+ )
816
+ self.enc_q = PosteriorEncoder(
817
+ spec_channels,
818
+ inter_channels,
819
+ hidden_channels,
820
+ 5,
821
+ 1,
822
+ 16,
823
+ gin_channels=gin_channels,
824
+ )
825
+ self.flow = ResidualCouplingBlock(
826
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
827
+ )
828
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
829
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
830
+
831
+ def remove_weight_norm(self):
832
+ self.dec.remove_weight_norm()
833
+ self.flow.remove_weight_norm()
834
+ self.enc_q.remove_weight_norm()
835
+
836
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
837
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
838
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
839
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
840
+ z_p = self.flow(z, y_mask, g=g)
841
+ z_slice, ids_slice = commons.rand_slice_segments(
842
+ z, y_lengths, self.segment_size
843
+ )
844
+ o = self.dec(z_slice, g=g)
845
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
846
+
847
+ def infer(self, phone, phone_lengths, sid, max_len=None):
848
+ g = self.emb_g(sid).unsqueeze(-1)
849
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
850
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
851
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
852
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
853
+ return o, x_mask, (z, z_p, m_p, logs_p)
854
+
855
+
856
+ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
857
+ def __init__(
858
+ self,
859
+ spec_channels,
860
+ segment_size,
861
+ inter_channels,
862
+ hidden_channels,
863
+ filter_channels,
864
+ n_heads,
865
+ n_layers,
866
+ kernel_size,
867
+ p_dropout,
868
+ resblock,
869
+ resblock_kernel_sizes,
870
+ resblock_dilation_sizes,
871
+ upsample_rates,
872
+ upsample_initial_channel,
873
+ upsample_kernel_sizes,
874
+ spk_embed_dim,
875
+ gin_channels,
876
+ sr=None,
877
+ **kwargs
878
+ ):
879
+ super().__init__()
880
+ self.spec_channels = spec_channels
881
+ self.inter_channels = inter_channels
882
+ self.hidden_channels = hidden_channels
883
+ self.filter_channels = filter_channels
884
+ self.n_heads = n_heads
885
+ self.n_layers = n_layers
886
+ self.kernel_size = kernel_size
887
+ self.p_dropout = p_dropout
888
+ self.resblock = resblock
889
+ self.resblock_kernel_sizes = resblock_kernel_sizes
890
+ self.resblock_dilation_sizes = resblock_dilation_sizes
891
+ self.upsample_rates = upsample_rates
892
+ self.upsample_initial_channel = upsample_initial_channel
893
+ self.upsample_kernel_sizes = upsample_kernel_sizes
894
+ self.segment_size = segment_size
895
+ self.gin_channels = gin_channels
896
+ # self.hop_length = hop_length#
897
+ self.spk_embed_dim = spk_embed_dim
898
+ self.enc_p = TextEncoder768(
899
+ inter_channels,
900
+ hidden_channels,
901
+ filter_channels,
902
+ n_heads,
903
+ n_layers,
904
+ kernel_size,
905
+ p_dropout,
906
+ f0=False,
907
+ )
908
+ self.dec = Generator(
909
+ inter_channels,
910
+ resblock,
911
+ resblock_kernel_sizes,
912
+ resblock_dilation_sizes,
913
+ upsample_rates,
914
+ upsample_initial_channel,
915
+ upsample_kernel_sizes,
916
+ gin_channels=gin_channels,
917
+ )
918
+ self.enc_q = PosteriorEncoder(
919
+ spec_channels,
920
+ inter_channels,
921
+ hidden_channels,
922
+ 5,
923
+ 1,
924
+ 16,
925
+ gin_channels=gin_channels,
926
+ )
927
+ self.flow = ResidualCouplingBlock(
928
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
929
+ )
930
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
931
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
932
+
933
+ def remove_weight_norm(self):
934
+ self.dec.remove_weight_norm()
935
+ self.flow.remove_weight_norm()
936
+ self.enc_q.remove_weight_norm()
937
+
938
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
939
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
940
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
941
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
942
+ z_p = self.flow(z, y_mask, g=g)
943
+ z_slice, ids_slice = commons.rand_slice_segments(
944
+ z, y_lengths, self.segment_size
945
+ )
946
+ o = self.dec(z_slice, g=g)
947
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
948
+
949
+ def infer(self, phone, phone_lengths, sid, max_len=None):
950
+ g = self.emb_g(sid).unsqueeze(-1)
951
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
952
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
953
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
954
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
955
+ return o, x_mask, (z, z_p, m_p, logs_p)
956
+
957
+
958
+ class MultiPeriodDiscriminator(torch.nn.Module):
959
+ def __init__(self, use_spectral_norm=False):
960
+ super(MultiPeriodDiscriminator, self).__init__()
961
+ periods = [2, 3, 5, 7, 11, 17]
962
+ # periods = [3, 5, 7, 11, 17, 23, 37]
963
+
964
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
965
+ discs = discs + [
966
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
967
+ ]
968
+ self.discriminators = nn.ModuleList(discs)
969
+
970
+ def forward(self, y, y_hat):
971
+ y_d_rs = [] #
972
+ y_d_gs = []
973
+ fmap_rs = []
974
+ fmap_gs = []
975
+ for i, d in enumerate(self.discriminators):
976
+ y_d_r, fmap_r = d(y)
977
+ y_d_g, fmap_g = d(y_hat)
978
+ # for j in range(len(fmap_r)):
979
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
980
+ y_d_rs.append(y_d_r)
981
+ y_d_gs.append(y_d_g)
982
+ fmap_rs.append(fmap_r)
983
+ fmap_gs.append(fmap_g)
984
+
985
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
986
+
987
+
988
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
989
+ def __init__(self, use_spectral_norm=False):
990
+ super(MultiPeriodDiscriminatorV2, self).__init__()
991
+ # periods = [2, 3, 5, 7, 11, 17]
992
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
993
+
994
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
995
+ discs = discs + [
996
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
997
+ ]
998
+ self.discriminators = nn.ModuleList(discs)
999
+
1000
+ def forward(self, y, y_hat):
1001
+ y_d_rs = [] #
1002
+ y_d_gs = []
1003
+ fmap_rs = []
1004
+ fmap_gs = []
1005
+ for i, d in enumerate(self.discriminators):
1006
+ y_d_r, fmap_r = d(y)
1007
+ y_d_g, fmap_g = d(y_hat)
1008
+ # for j in range(len(fmap_r)):
1009
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1010
+ y_d_rs.append(y_d_r)
1011
+ y_d_gs.append(y_d_g)
1012
+ fmap_rs.append(fmap_r)
1013
+ fmap_gs.append(fmap_g)
1014
+
1015
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1016
+
1017
+
1018
+ class DiscriminatorS(torch.nn.Module):
1019
+ def __init__(self, use_spectral_norm=False):
1020
+ super(DiscriminatorS, self).__init__()
1021
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1022
+ self.convs = nn.ModuleList(
1023
+ [
1024
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
1025
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
1026
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
1027
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
1028
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
1029
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
1030
+ ]
1031
+ )
1032
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
1033
+
1034
+ def forward(self, x):
1035
+ fmap = []
1036
+
1037
+ for l in self.convs:
1038
+ x = l(x)
1039
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1040
+ fmap.append(x)
1041
+ x = self.conv_post(x)
1042
+ fmap.append(x)
1043
+ x = torch.flatten(x, 1, -1)
1044
+
1045
+ return x, fmap
1046
+
1047
+
1048
+ class DiscriminatorP(torch.nn.Module):
1049
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
1050
+ super(DiscriminatorP, self).__init__()
1051
+ self.period = period
1052
+ self.use_spectral_norm = use_spectral_norm
1053
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1054
+ self.convs = nn.ModuleList(
1055
+ [
1056
+ norm_f(
1057
+ Conv2d(
1058
+ 1,
1059
+ 32,
1060
+ (kernel_size, 1),
1061
+ (stride, 1),
1062
+ padding=(get_padding(kernel_size, 1), 0),
1063
+ )
1064
+ ),
1065
+ norm_f(
1066
+ Conv2d(
1067
+ 32,
1068
+ 128,
1069
+ (kernel_size, 1),
1070
+ (stride, 1),
1071
+ padding=(get_padding(kernel_size, 1), 0),
1072
+ )
1073
+ ),
1074
+ norm_f(
1075
+ Conv2d(
1076
+ 128,
1077
+ 512,
1078
+ (kernel_size, 1),
1079
+ (stride, 1),
1080
+ padding=(get_padding(kernel_size, 1), 0),
1081
+ )
1082
+ ),
1083
+ norm_f(
1084
+ Conv2d(
1085
+ 512,
1086
+ 1024,
1087
+ (kernel_size, 1),
1088
+ (stride, 1),
1089
+ padding=(get_padding(kernel_size, 1), 0),
1090
+ )
1091
+ ),
1092
+ norm_f(
1093
+ Conv2d(
1094
+ 1024,
1095
+ 1024,
1096
+ (kernel_size, 1),
1097
+ 1,
1098
+ padding=(get_padding(kernel_size, 1), 0),
1099
+ )
1100
+ ),
1101
+ ]
1102
+ )
1103
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
1104
+
1105
+ def forward(self, x):
1106
+ fmap = []
1107
+
1108
+ # 1d to 2d
1109
+ b, c, t = x.shape
1110
+ if t % self.period != 0: # pad first
1111
+ n_pad = self.period - (t % self.period)
1112
+ x = F.pad(x, (0, n_pad), "reflect")
1113
+ t = t + n_pad
1114
+ x = x.view(b, c, t // self.period, self.period)
1115
+
1116
+ for l in self.convs:
1117
+ x = l(x)
1118
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1119
+ fmap.append(x)
1120
+ x = self.conv_post(x)
1121
+ fmap.append(x)
1122
+ x = torch.flatten(x, 1, -1)
1123
+
1124
+ return x, fmap
src/infer_pack/models_onnx.py ADDED
@@ -0,0 +1,818 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from infer_pack import modules
7
+ from infer_pack import attentions
8
+ from infer_pack import commons
9
+ from infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ return uv
319
+
320
+ def forward(self, f0, upp):
321
+ """sine_tensor, uv = forward(f0)
322
+ input F0: tensor(batchsize=1, length, dim=1)
323
+ f0 for unvoiced steps should be 0
324
+ output sine_tensor: tensor(batchsize=1, length, dim)
325
+ output uv: tensor(batchsize=1, length, 1)
326
+ """
327
+ with torch.no_grad():
328
+ f0 = f0[:, None].transpose(1, 2)
329
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
+ # fundamental component
331
+ f0_buf[:, :, 0] = f0[:, :, 0]
332
+ for idx in np.arange(self.harmonic_num):
333
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
+ idx + 2
335
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
+ rand_ini = torch.rand(
338
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
+ )
340
+ rand_ini[:, 0] = 0
341
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
+ tmp_over_one *= upp
344
+ tmp_over_one = F.interpolate(
345
+ tmp_over_one.transpose(2, 1),
346
+ scale_factor=upp,
347
+ mode="linear",
348
+ align_corners=True,
349
+ ).transpose(2, 1)
350
+ rad_values = F.interpolate(
351
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
+ ).transpose(
353
+ 2, 1
354
+ ) #######
355
+ tmp_over_one %= 1
356
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
+ cumsum_shift = torch.zeros_like(rad_values)
358
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
+ sine_waves = torch.sin(
360
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
+ )
362
+ sine_waves = sine_waves * self.sine_amp
363
+ uv = self._f02uv(f0)
364
+ uv = F.interpolate(
365
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
+ ).transpose(2, 1)
367
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
+ noise = noise_amp * torch.randn_like(sine_waves)
369
+ sine_waves = sine_waves * uv + noise
370
+ return sine_waves, uv, noise
371
+
372
+
373
+ class SourceModuleHnNSF(torch.nn.Module):
374
+ """SourceModule for hn-nsf
375
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
+ add_noise_std=0.003, voiced_threshod=0)
377
+ sampling_rate: sampling_rate in Hz
378
+ harmonic_num: number of harmonic above F0 (default: 0)
379
+ sine_amp: amplitude of sine source signal (default: 0.1)
380
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
381
+ note that amplitude of noise in unvoiced is decided
382
+ by sine_amp
383
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
384
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
+ F0_sampled (batchsize, length, 1)
386
+ Sine_source (batchsize, length, 1)
387
+ noise_source (batchsize, length 1)
388
+ uv (batchsize, length, 1)
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ sampling_rate,
394
+ harmonic_num=0,
395
+ sine_amp=0.1,
396
+ add_noise_std=0.003,
397
+ voiced_threshod=0,
398
+ is_half=True,
399
+ ):
400
+ super(SourceModuleHnNSF, self).__init__()
401
+
402
+ self.sine_amp = sine_amp
403
+ self.noise_std = add_noise_std
404
+ self.is_half = is_half
405
+ # to produce sine waveforms
406
+ self.l_sin_gen = SineGen(
407
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
+ )
409
+
410
+ # to merge source harmonics into a single excitation
411
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
+ self.l_tanh = torch.nn.Tanh()
413
+
414
+ def forward(self, x, upp=None):
415
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
+ if self.is_half:
417
+ sine_wavs = sine_wavs.half()
418
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
+ return sine_merge, None, None # noise, uv
420
+
421
+
422
+ class GeneratorNSF(torch.nn.Module):
423
+ def __init__(
424
+ self,
425
+ initial_channel,
426
+ resblock,
427
+ resblock_kernel_sizes,
428
+ resblock_dilation_sizes,
429
+ upsample_rates,
430
+ upsample_initial_channel,
431
+ upsample_kernel_sizes,
432
+ gin_channels,
433
+ sr,
434
+ is_half=False,
435
+ ):
436
+ super(GeneratorNSF, self).__init__()
437
+ self.num_kernels = len(resblock_kernel_sizes)
438
+ self.num_upsamples = len(upsample_rates)
439
+
440
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
+ self.m_source = SourceModuleHnNSF(
442
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
443
+ )
444
+ self.noise_convs = nn.ModuleList()
445
+ self.conv_pre = Conv1d(
446
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
447
+ )
448
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
+
450
+ self.ups = nn.ModuleList()
451
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
453
+ self.ups.append(
454
+ weight_norm(
455
+ ConvTranspose1d(
456
+ upsample_initial_channel // (2**i),
457
+ upsample_initial_channel // (2 ** (i + 1)),
458
+ k,
459
+ u,
460
+ padding=(k - u) // 2,
461
+ )
462
+ )
463
+ )
464
+ if i + 1 < len(upsample_rates):
465
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
466
+ self.noise_convs.append(
467
+ Conv1d(
468
+ 1,
469
+ c_cur,
470
+ kernel_size=stride_f0 * 2,
471
+ stride=stride_f0,
472
+ padding=stride_f0 // 2,
473
+ )
474
+ )
475
+ else:
476
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
+
478
+ self.resblocks = nn.ModuleList()
479
+ for i in range(len(self.ups)):
480
+ ch = upsample_initial_channel // (2 ** (i + 1))
481
+ for j, (k, d) in enumerate(
482
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
+ ):
484
+ self.resblocks.append(resblock(ch, k, d))
485
+
486
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
+ self.ups.apply(init_weights)
488
+
489
+ if gin_channels != 0:
490
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
+
492
+ self.upp = np.prod(upsample_rates)
493
+
494
+ def forward(self, x, f0, g=None):
495
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
496
+ har_source = har_source.transpose(1, 2)
497
+ x = self.conv_pre(x)
498
+ if g is not None:
499
+ x = x + self.cond(g)
500
+
501
+ for i in range(self.num_upsamples):
502
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
+ x = self.ups[i](x)
504
+ x_source = self.noise_convs[i](har_source)
505
+ x = x + x_source
506
+ xs = None
507
+ for j in range(self.num_kernels):
508
+ if xs is None:
509
+ xs = self.resblocks[i * self.num_kernels + j](x)
510
+ else:
511
+ xs += self.resblocks[i * self.num_kernels + j](x)
512
+ x = xs / self.num_kernels
513
+ x = F.leaky_relu(x)
514
+ x = self.conv_post(x)
515
+ x = torch.tanh(x)
516
+ return x
517
+
518
+ def remove_weight_norm(self):
519
+ for l in self.ups:
520
+ remove_weight_norm(l)
521
+ for l in self.resblocks:
522
+ l.remove_weight_norm()
523
+
524
+
525
+ sr2sr = {
526
+ "32k": 32000,
527
+ "40k": 40000,
528
+ "48k": 48000,
529
+ }
530
+
531
+
532
+ class SynthesizerTrnMsNSFsidM(nn.Module):
533
+ def __init__(
534
+ self,
535
+ spec_channels,
536
+ segment_size,
537
+ inter_channels,
538
+ hidden_channels,
539
+ filter_channels,
540
+ n_heads,
541
+ n_layers,
542
+ kernel_size,
543
+ p_dropout,
544
+ resblock,
545
+ resblock_kernel_sizes,
546
+ resblock_dilation_sizes,
547
+ upsample_rates,
548
+ upsample_initial_channel,
549
+ upsample_kernel_sizes,
550
+ spk_embed_dim,
551
+ gin_channels,
552
+ sr,
553
+ **kwargs
554
+ ):
555
+ super().__init__()
556
+ if type(sr) == type("strr"):
557
+ sr = sr2sr[sr]
558
+ self.spec_channels = spec_channels
559
+ self.inter_channels = inter_channels
560
+ self.hidden_channels = hidden_channels
561
+ self.filter_channels = filter_channels
562
+ self.n_heads = n_heads
563
+ self.n_layers = n_layers
564
+ self.kernel_size = kernel_size
565
+ self.p_dropout = p_dropout
566
+ self.resblock = resblock
567
+ self.resblock_kernel_sizes = resblock_kernel_sizes
568
+ self.resblock_dilation_sizes = resblock_dilation_sizes
569
+ self.upsample_rates = upsample_rates
570
+ self.upsample_initial_channel = upsample_initial_channel
571
+ self.upsample_kernel_sizes = upsample_kernel_sizes
572
+ self.segment_size = segment_size
573
+ self.gin_channels = gin_channels
574
+ # self.hop_length = hop_length#
575
+ self.spk_embed_dim = spk_embed_dim
576
+ if self.gin_channels == 256:
577
+ self.enc_p = TextEncoder256(
578
+ inter_channels,
579
+ hidden_channels,
580
+ filter_channels,
581
+ n_heads,
582
+ n_layers,
583
+ kernel_size,
584
+ p_dropout,
585
+ )
586
+ else:
587
+ self.enc_p = TextEncoder768(
588
+ inter_channels,
589
+ hidden_channels,
590
+ filter_channels,
591
+ n_heads,
592
+ n_layers,
593
+ kernel_size,
594
+ p_dropout,
595
+ )
596
+ self.dec = GeneratorNSF(
597
+ inter_channels,
598
+ resblock,
599
+ resblock_kernel_sizes,
600
+ resblock_dilation_sizes,
601
+ upsample_rates,
602
+ upsample_initial_channel,
603
+ upsample_kernel_sizes,
604
+ gin_channels=gin_channels,
605
+ sr=sr,
606
+ is_half=kwargs["is_half"],
607
+ )
608
+ self.enc_q = PosteriorEncoder(
609
+ spec_channels,
610
+ inter_channels,
611
+ hidden_channels,
612
+ 5,
613
+ 1,
614
+ 16,
615
+ gin_channels=gin_channels,
616
+ )
617
+ self.flow = ResidualCouplingBlock(
618
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
619
+ )
620
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
621
+ self.speaker_map = None
622
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
623
+
624
+ def remove_weight_norm(self):
625
+ self.dec.remove_weight_norm()
626
+ self.flow.remove_weight_norm()
627
+ self.enc_q.remove_weight_norm()
628
+
629
+ def construct_spkmixmap(self, n_speaker):
630
+ self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
631
+ for i in range(n_speaker):
632
+ self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
633
+ self.speaker_map = self.speaker_map.unsqueeze(0)
634
+
635
+ def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
636
+ if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
637
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
638
+ g = g * self.speaker_map # [N, S, B, 1, H]
639
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
640
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
641
+ else:
642
+ g = g.unsqueeze(0)
643
+ g = self.emb_g(g).transpose(1, 2)
644
+
645
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
646
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
647
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
648
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
649
+ return o
650
+
651
+
652
+ class MultiPeriodDiscriminator(torch.nn.Module):
653
+ def __init__(self, use_spectral_norm=False):
654
+ super(MultiPeriodDiscriminator, self).__init__()
655
+ periods = [2, 3, 5, 7, 11, 17]
656
+ # periods = [3, 5, 7, 11, 17, 23, 37]
657
+
658
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
659
+ discs = discs + [
660
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
661
+ ]
662
+ self.discriminators = nn.ModuleList(discs)
663
+
664
+ def forward(self, y, y_hat):
665
+ y_d_rs = [] #
666
+ y_d_gs = []
667
+ fmap_rs = []
668
+ fmap_gs = []
669
+ for i, d in enumerate(self.discriminators):
670
+ y_d_r, fmap_r = d(y)
671
+ y_d_g, fmap_g = d(y_hat)
672
+ # for j in range(len(fmap_r)):
673
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
674
+ y_d_rs.append(y_d_r)
675
+ y_d_gs.append(y_d_g)
676
+ fmap_rs.append(fmap_r)
677
+ fmap_gs.append(fmap_g)
678
+
679
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
680
+
681
+
682
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
683
+ def __init__(self, use_spectral_norm=False):
684
+ super(MultiPeriodDiscriminatorV2, self).__init__()
685
+ # periods = [2, 3, 5, 7, 11, 17]
686
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
687
+
688
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
689
+ discs = discs + [
690
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
691
+ ]
692
+ self.discriminators = nn.ModuleList(discs)
693
+
694
+ def forward(self, y, y_hat):
695
+ y_d_rs = [] #
696
+ y_d_gs = []
697
+ fmap_rs = []
698
+ fmap_gs = []
699
+ for i, d in enumerate(self.discriminators):
700
+ y_d_r, fmap_r = d(y)
701
+ y_d_g, fmap_g = d(y_hat)
702
+ # for j in range(len(fmap_r)):
703
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
704
+ y_d_rs.append(y_d_r)
705
+ y_d_gs.append(y_d_g)
706
+ fmap_rs.append(fmap_r)
707
+ fmap_gs.append(fmap_g)
708
+
709
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
710
+
711
+
712
+ class DiscriminatorS(torch.nn.Module):
713
+ def __init__(self, use_spectral_norm=False):
714
+ super(DiscriminatorS, self).__init__()
715
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
716
+ self.convs = nn.ModuleList(
717
+ [
718
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
719
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
720
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
721
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
722
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
723
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
724
+ ]
725
+ )
726
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
727
+
728
+ def forward(self, x):
729
+ fmap = []
730
+
731
+ for l in self.convs:
732
+ x = l(x)
733
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
734
+ fmap.append(x)
735
+ x = self.conv_post(x)
736
+ fmap.append(x)
737
+ x = torch.flatten(x, 1, -1)
738
+
739
+ return x, fmap
740
+
741
+
742
+ class DiscriminatorP(torch.nn.Module):
743
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
744
+ super(DiscriminatorP, self).__init__()
745
+ self.period = period
746
+ self.use_spectral_norm = use_spectral_norm
747
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
748
+ self.convs = nn.ModuleList(
749
+ [
750
+ norm_f(
751
+ Conv2d(
752
+ 1,
753
+ 32,
754
+ (kernel_size, 1),
755
+ (stride, 1),
756
+ padding=(get_padding(kernel_size, 1), 0),
757
+ )
758
+ ),
759
+ norm_f(
760
+ Conv2d(
761
+ 32,
762
+ 128,
763
+ (kernel_size, 1),
764
+ (stride, 1),
765
+ padding=(get_padding(kernel_size, 1), 0),
766
+ )
767
+ ),
768
+ norm_f(
769
+ Conv2d(
770
+ 128,
771
+ 512,
772
+ (kernel_size, 1),
773
+ (stride, 1),
774
+ padding=(get_padding(kernel_size, 1), 0),
775
+ )
776
+ ),
777
+ norm_f(
778
+ Conv2d(
779
+ 512,
780
+ 1024,
781
+ (kernel_size, 1),
782
+ (stride, 1),
783
+ padding=(get_padding(kernel_size, 1), 0),
784
+ )
785
+ ),
786
+ norm_f(
787
+ Conv2d(
788
+ 1024,
789
+ 1024,
790
+ (kernel_size, 1),
791
+ 1,
792
+ padding=(get_padding(kernel_size, 1), 0),
793
+ )
794
+ ),
795
+ ]
796
+ )
797
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
798
+
799
+ def forward(self, x):
800
+ fmap = []
801
+
802
+ # 1d to 2d
803
+ b, c, t = x.shape
804
+ if t % self.period != 0: # pad first
805
+ n_pad = self.period - (t % self.period)
806
+ x = F.pad(x, (0, n_pad), "reflect")
807
+ t = t + n_pad
808
+ x = x.view(b, c, t // self.period, self.period)
809
+
810
+ for l in self.convs:
811
+ x = l(x)
812
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
813
+ fmap.append(x)
814
+ x = self.conv_post(x)
815
+ fmap.append(x)
816
+ x = torch.flatten(x, 1, -1)
817
+
818
+ return x, fmap
src/infer_pack/models_onnx_moess.py ADDED
@@ -0,0 +1,849 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from infer_pack import modules
7
+ from infer_pack import attentions
8
+ from infer_pack import commons
9
+ from infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder256Sim(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(256, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ x = self.proj(x) * x_mask
106
+ return x, x_mask
107
+
108
+
109
+ class ResidualCouplingBlock(nn.Module):
110
+ def __init__(
111
+ self,
112
+ channels,
113
+ hidden_channels,
114
+ kernel_size,
115
+ dilation_rate,
116
+ n_layers,
117
+ n_flows=4,
118
+ gin_channels=0,
119
+ ):
120
+ super().__init__()
121
+ self.channels = channels
122
+ self.hidden_channels = hidden_channels
123
+ self.kernel_size = kernel_size
124
+ self.dilation_rate = dilation_rate
125
+ self.n_layers = n_layers
126
+ self.n_flows = n_flows
127
+ self.gin_channels = gin_channels
128
+
129
+ self.flows = nn.ModuleList()
130
+ for i in range(n_flows):
131
+ self.flows.append(
132
+ modules.ResidualCouplingLayer(
133
+ channels,
134
+ hidden_channels,
135
+ kernel_size,
136
+ dilation_rate,
137
+ n_layers,
138
+ gin_channels=gin_channels,
139
+ mean_only=True,
140
+ )
141
+ )
142
+ self.flows.append(modules.Flip())
143
+
144
+ def forward(self, x, x_mask, g=None, reverse=False):
145
+ if not reverse:
146
+ for flow in self.flows:
147
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
148
+ else:
149
+ for flow in reversed(self.flows):
150
+ x = flow(x, x_mask, g=g, reverse=reverse)
151
+ return x
152
+
153
+ def remove_weight_norm(self):
154
+ for i in range(self.n_flows):
155
+ self.flows[i * 2].remove_weight_norm()
156
+
157
+
158
+ class PosteriorEncoder(nn.Module):
159
+ def __init__(
160
+ self,
161
+ in_channels,
162
+ out_channels,
163
+ hidden_channels,
164
+ kernel_size,
165
+ dilation_rate,
166
+ n_layers,
167
+ gin_channels=0,
168
+ ):
169
+ super().__init__()
170
+ self.in_channels = in_channels
171
+ self.out_channels = out_channels
172
+ self.hidden_channels = hidden_channels
173
+ self.kernel_size = kernel_size
174
+ self.dilation_rate = dilation_rate
175
+ self.n_layers = n_layers
176
+ self.gin_channels = gin_channels
177
+
178
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
179
+ self.enc = modules.WN(
180
+ hidden_channels,
181
+ kernel_size,
182
+ dilation_rate,
183
+ n_layers,
184
+ gin_channels=gin_channels,
185
+ )
186
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
187
+
188
+ def forward(self, x, x_lengths, g=None):
189
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
190
+ x.dtype
191
+ )
192
+ x = self.pre(x) * x_mask
193
+ x = self.enc(x, x_mask, g=g)
194
+ stats = self.proj(x) * x_mask
195
+ m, logs = torch.split(stats, self.out_channels, dim=1)
196
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
197
+ return z, m, logs, x_mask
198
+
199
+ def remove_weight_norm(self):
200
+ self.enc.remove_weight_norm()
201
+
202
+
203
+ class Generator(torch.nn.Module):
204
+ def __init__(
205
+ self,
206
+ initial_channel,
207
+ resblock,
208
+ resblock_kernel_sizes,
209
+ resblock_dilation_sizes,
210
+ upsample_rates,
211
+ upsample_initial_channel,
212
+ upsample_kernel_sizes,
213
+ gin_channels=0,
214
+ ):
215
+ super(Generator, self).__init__()
216
+ self.num_kernels = len(resblock_kernel_sizes)
217
+ self.num_upsamples = len(upsample_rates)
218
+ self.conv_pre = Conv1d(
219
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
220
+ )
221
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
222
+
223
+ self.ups = nn.ModuleList()
224
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
225
+ self.ups.append(
226
+ weight_norm(
227
+ ConvTranspose1d(
228
+ upsample_initial_channel // (2**i),
229
+ upsample_initial_channel // (2 ** (i + 1)),
230
+ k,
231
+ u,
232
+ padding=(k - u) // 2,
233
+ )
234
+ )
235
+ )
236
+
237
+ self.resblocks = nn.ModuleList()
238
+ for i in range(len(self.ups)):
239
+ ch = upsample_initial_channel // (2 ** (i + 1))
240
+ for j, (k, d) in enumerate(
241
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
242
+ ):
243
+ self.resblocks.append(resblock(ch, k, d))
244
+
245
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
246
+ self.ups.apply(init_weights)
247
+
248
+ if gin_channels != 0:
249
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
250
+
251
+ def forward(self, x, g=None):
252
+ x = self.conv_pre(x)
253
+ if g is not None:
254
+ x = x + self.cond(g)
255
+
256
+ for i in range(self.num_upsamples):
257
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
258
+ x = self.ups[i](x)
259
+ xs = None
260
+ for j in range(self.num_kernels):
261
+ if xs is None:
262
+ xs = self.resblocks[i * self.num_kernels + j](x)
263
+ else:
264
+ xs += self.resblocks[i * self.num_kernels + j](x)
265
+ x = xs / self.num_kernels
266
+ x = F.leaky_relu(x)
267
+ x = self.conv_post(x)
268
+ x = torch.tanh(x)
269
+
270
+ return x
271
+
272
+ def remove_weight_norm(self):
273
+ for l in self.ups:
274
+ remove_weight_norm(l)
275
+ for l in self.resblocks:
276
+ l.remove_weight_norm()
277
+
278
+
279
+ class SineGen(torch.nn.Module):
280
+ """Definition of sine generator
281
+ SineGen(samp_rate, harmonic_num = 0,
282
+ sine_amp = 0.1, noise_std = 0.003,
283
+ voiced_threshold = 0,
284
+ flag_for_pulse=False)
285
+ samp_rate: sampling rate in Hz
286
+ harmonic_num: number of harmonic overtones (default 0)
287
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
288
+ noise_std: std of Gaussian noise (default 0.003)
289
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
290
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
291
+ Note: when flag_for_pulse is True, the first time step of a voiced
292
+ segment is always sin(np.pi) or cos(0)
293
+ """
294
+
295
+ def __init__(
296
+ self,
297
+ samp_rate,
298
+ harmonic_num=0,
299
+ sine_amp=0.1,
300
+ noise_std=0.003,
301
+ voiced_threshold=0,
302
+ flag_for_pulse=False,
303
+ ):
304
+ super(SineGen, self).__init__()
305
+ self.sine_amp = sine_amp
306
+ self.noise_std = noise_std
307
+ self.harmonic_num = harmonic_num
308
+ self.dim = self.harmonic_num + 1
309
+ self.sampling_rate = samp_rate
310
+ self.voiced_threshold = voiced_threshold
311
+
312
+ def _f02uv(self, f0):
313
+ # generate uv signal
314
+ uv = torch.ones_like(f0)
315
+ uv = uv * (f0 > self.voiced_threshold)
316
+ return uv
317
+
318
+ def forward(self, f0, upp):
319
+ """sine_tensor, uv = forward(f0)
320
+ input F0: tensor(batchsize=1, length, dim=1)
321
+ f0 for unvoiced steps should be 0
322
+ output sine_tensor: tensor(batchsize=1, length, dim)
323
+ output uv: tensor(batchsize=1, length, 1)
324
+ """
325
+ with torch.no_grad():
326
+ f0 = f0[:, None].transpose(1, 2)
327
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
328
+ # fundamental component
329
+ f0_buf[:, :, 0] = f0[:, :, 0]
330
+ for idx in np.arange(self.harmonic_num):
331
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
332
+ idx + 2
333
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
334
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
335
+ rand_ini = torch.rand(
336
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
337
+ )
338
+ rand_ini[:, 0] = 0
339
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
340
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
341
+ tmp_over_one *= upp
342
+ tmp_over_one = F.interpolate(
343
+ tmp_over_one.transpose(2, 1),
344
+ scale_factor=upp,
345
+ mode="linear",
346
+ align_corners=True,
347
+ ).transpose(2, 1)
348
+ rad_values = F.interpolate(
349
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
350
+ ).transpose(
351
+ 2, 1
352
+ ) #######
353
+ tmp_over_one %= 1
354
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
355
+ cumsum_shift = torch.zeros_like(rad_values)
356
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
357
+ sine_waves = torch.sin(
358
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
359
+ )
360
+ sine_waves = sine_waves * self.sine_amp
361
+ uv = self._f02uv(f0)
362
+ uv = F.interpolate(
363
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
364
+ ).transpose(2, 1)
365
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
366
+ noise = noise_amp * torch.randn_like(sine_waves)
367
+ sine_waves = sine_waves * uv + noise
368
+ return sine_waves, uv, noise
369
+
370
+
371
+ class SourceModuleHnNSF(torch.nn.Module):
372
+ """SourceModule for hn-nsf
373
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
374
+ add_noise_std=0.003, voiced_threshod=0)
375
+ sampling_rate: sampling_rate in Hz
376
+ harmonic_num: number of harmonic above F0 (default: 0)
377
+ sine_amp: amplitude of sine source signal (default: 0.1)
378
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
379
+ note that amplitude of noise in unvoiced is decided
380
+ by sine_amp
381
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
382
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
383
+ F0_sampled (batchsize, length, 1)
384
+ Sine_source (batchsize, length, 1)
385
+ noise_source (batchsize, length 1)
386
+ uv (batchsize, length, 1)
387
+ """
388
+
389
+ def __init__(
390
+ self,
391
+ sampling_rate,
392
+ harmonic_num=0,
393
+ sine_amp=0.1,
394
+ add_noise_std=0.003,
395
+ voiced_threshod=0,
396
+ is_half=True,
397
+ ):
398
+ super(SourceModuleHnNSF, self).__init__()
399
+
400
+ self.sine_amp = sine_amp
401
+ self.noise_std = add_noise_std
402
+ self.is_half = is_half
403
+ # to produce sine waveforms
404
+ self.l_sin_gen = SineGen(
405
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
406
+ )
407
+
408
+ # to merge source harmonics into a single excitation
409
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
410
+ self.l_tanh = torch.nn.Tanh()
411
+
412
+ def forward(self, x, upp=None):
413
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
414
+ if self.is_half:
415
+ sine_wavs = sine_wavs.half()
416
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
417
+ return sine_merge, None, None # noise, uv
418
+
419
+
420
+ class GeneratorNSF(torch.nn.Module):
421
+ def __init__(
422
+ self,
423
+ initial_channel,
424
+ resblock,
425
+ resblock_kernel_sizes,
426
+ resblock_dilation_sizes,
427
+ upsample_rates,
428
+ upsample_initial_channel,
429
+ upsample_kernel_sizes,
430
+ gin_channels,
431
+ sr,
432
+ is_half=False,
433
+ ):
434
+ super(GeneratorNSF, self).__init__()
435
+ self.num_kernels = len(resblock_kernel_sizes)
436
+ self.num_upsamples = len(upsample_rates)
437
+
438
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
439
+ self.m_source = SourceModuleHnNSF(
440
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
441
+ )
442
+ self.noise_convs = nn.ModuleList()
443
+ self.conv_pre = Conv1d(
444
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
445
+ )
446
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
447
+
448
+ self.ups = nn.ModuleList()
449
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
450
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
451
+ self.ups.append(
452
+ weight_norm(
453
+ ConvTranspose1d(
454
+ upsample_initial_channel // (2**i),
455
+ upsample_initial_channel // (2 ** (i + 1)),
456
+ k,
457
+ u,
458
+ padding=(k - u) // 2,
459
+ )
460
+ )
461
+ )
462
+ if i + 1 < len(upsample_rates):
463
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
464
+ self.noise_convs.append(
465
+ Conv1d(
466
+ 1,
467
+ c_cur,
468
+ kernel_size=stride_f0 * 2,
469
+ stride=stride_f0,
470
+ padding=stride_f0 // 2,
471
+ )
472
+ )
473
+ else:
474
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
475
+
476
+ self.resblocks = nn.ModuleList()
477
+ for i in range(len(self.ups)):
478
+ ch = upsample_initial_channel // (2 ** (i + 1))
479
+ for j, (k, d) in enumerate(
480
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
481
+ ):
482
+ self.resblocks.append(resblock(ch, k, d))
483
+
484
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
485
+ self.ups.apply(init_weights)
486
+
487
+ if gin_channels != 0:
488
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
489
+
490
+ self.upp = np.prod(upsample_rates)
491
+
492
+ def forward(self, x, f0, g=None):
493
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
494
+ har_source = har_source.transpose(1, 2)
495
+ x = self.conv_pre(x)
496
+ if g is not None:
497
+ x = x + self.cond(g)
498
+
499
+ for i in range(self.num_upsamples):
500
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
501
+ x = self.ups[i](x)
502
+ x_source = self.noise_convs[i](har_source)
503
+ x = x + x_source
504
+ xs = None
505
+ for j in range(self.num_kernels):
506
+ if xs is None:
507
+ xs = self.resblocks[i * self.num_kernels + j](x)
508
+ else:
509
+ xs += self.resblocks[i * self.num_kernels + j](x)
510
+ x = xs / self.num_kernels
511
+ x = F.leaky_relu(x)
512
+ x = self.conv_post(x)
513
+ x = torch.tanh(x)
514
+ return x
515
+
516
+ def remove_weight_norm(self):
517
+ for l in self.ups:
518
+ remove_weight_norm(l)
519
+ for l in self.resblocks:
520
+ l.remove_weight_norm()
521
+
522
+
523
+ sr2sr = {
524
+ "32k": 32000,
525
+ "40k": 40000,
526
+ "48k": 48000,
527
+ }
528
+
529
+
530
+ class SynthesizerTrnMs256NSFsidM(nn.Module):
531
+ def __init__(
532
+ self,
533
+ spec_channels,
534
+ segment_size,
535
+ inter_channels,
536
+ hidden_channels,
537
+ filter_channels,
538
+ n_heads,
539
+ n_layers,
540
+ kernel_size,
541
+ p_dropout,
542
+ resblock,
543
+ resblock_kernel_sizes,
544
+ resblock_dilation_sizes,
545
+ upsample_rates,
546
+ upsample_initial_channel,
547
+ upsample_kernel_sizes,
548
+ spk_embed_dim,
549
+ gin_channels,
550
+ sr,
551
+ **kwargs
552
+ ):
553
+ super().__init__()
554
+ if type(sr) == type("strr"):
555
+ sr = sr2sr[sr]
556
+ self.spec_channels = spec_channels
557
+ self.inter_channels = inter_channels
558
+ self.hidden_channels = hidden_channels
559
+ self.filter_channels = filter_channels
560
+ self.n_heads = n_heads
561
+ self.n_layers = n_layers
562
+ self.kernel_size = kernel_size
563
+ self.p_dropout = p_dropout
564
+ self.resblock = resblock
565
+ self.resblock_kernel_sizes = resblock_kernel_sizes
566
+ self.resblock_dilation_sizes = resblock_dilation_sizes
567
+ self.upsample_rates = upsample_rates
568
+ self.upsample_initial_channel = upsample_initial_channel
569
+ self.upsample_kernel_sizes = upsample_kernel_sizes
570
+ self.segment_size = segment_size
571
+ self.gin_channels = gin_channels
572
+ # self.hop_length = hop_length#
573
+ self.spk_embed_dim = spk_embed_dim
574
+ self.enc_p = TextEncoder256(
575
+ inter_channels,
576
+ hidden_channels,
577
+ filter_channels,
578
+ n_heads,
579
+ n_layers,
580
+ kernel_size,
581
+ p_dropout,
582
+ )
583
+ self.dec = GeneratorNSF(
584
+ inter_channels,
585
+ resblock,
586
+ resblock_kernel_sizes,
587
+ resblock_dilation_sizes,
588
+ upsample_rates,
589
+ upsample_initial_channel,
590
+ upsample_kernel_sizes,
591
+ gin_channels=gin_channels,
592
+ sr=sr,
593
+ is_half=kwargs["is_half"],
594
+ )
595
+ self.enc_q = PosteriorEncoder(
596
+ spec_channels,
597
+ inter_channels,
598
+ hidden_channels,
599
+ 5,
600
+ 1,
601
+ 16,
602
+ gin_channels=gin_channels,
603
+ )
604
+ self.flow = ResidualCouplingBlock(
605
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
606
+ )
607
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
608
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
609
+
610
+ def remove_weight_norm(self):
611
+ self.dec.remove_weight_norm()
612
+ self.flow.remove_weight_norm()
613
+ self.enc_q.remove_weight_norm()
614
+
615
+ def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
616
+ g = self.emb_g(sid).unsqueeze(-1)
617
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
618
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
619
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
620
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
621
+ return o
622
+
623
+
624
+ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
625
+ """
626
+ Synthesizer for Training
627
+ """
628
+
629
+ def __init__(
630
+ self,
631
+ spec_channels,
632
+ segment_size,
633
+ inter_channels,
634
+ hidden_channels,
635
+ filter_channels,
636
+ n_heads,
637
+ n_layers,
638
+ kernel_size,
639
+ p_dropout,
640
+ resblock,
641
+ resblock_kernel_sizes,
642
+ resblock_dilation_sizes,
643
+ upsample_rates,
644
+ upsample_initial_channel,
645
+ upsample_kernel_sizes,
646
+ spk_embed_dim,
647
+ # hop_length,
648
+ gin_channels=0,
649
+ use_sdp=True,
650
+ **kwargs
651
+ ):
652
+ super().__init__()
653
+ self.spec_channels = spec_channels
654
+ self.inter_channels = inter_channels
655
+ self.hidden_channels = hidden_channels
656
+ self.filter_channels = filter_channels
657
+ self.n_heads = n_heads
658
+ self.n_layers = n_layers
659
+ self.kernel_size = kernel_size
660
+ self.p_dropout = p_dropout
661
+ self.resblock = resblock
662
+ self.resblock_kernel_sizes = resblock_kernel_sizes
663
+ self.resblock_dilation_sizes = resblock_dilation_sizes
664
+ self.upsample_rates = upsample_rates
665
+ self.upsample_initial_channel = upsample_initial_channel
666
+ self.upsample_kernel_sizes = upsample_kernel_sizes
667
+ self.segment_size = segment_size
668
+ self.gin_channels = gin_channels
669
+ # self.hop_length = hop_length#
670
+ self.spk_embed_dim = spk_embed_dim
671
+ self.enc_p = TextEncoder256Sim(
672
+ inter_channels,
673
+ hidden_channels,
674
+ filter_channels,
675
+ n_heads,
676
+ n_layers,
677
+ kernel_size,
678
+ p_dropout,
679
+ )
680
+ self.dec = GeneratorNSF(
681
+ inter_channels,
682
+ resblock,
683
+ resblock_kernel_sizes,
684
+ resblock_dilation_sizes,
685
+ upsample_rates,
686
+ upsample_initial_channel,
687
+ upsample_kernel_sizes,
688
+ gin_channels=gin_channels,
689
+ is_half=kwargs["is_half"],
690
+ )
691
+
692
+ self.flow = ResidualCouplingBlock(
693
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
694
+ )
695
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
696
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
697
+
698
+ def remove_weight_norm(self):
699
+ self.dec.remove_weight_norm()
700
+ self.flow.remove_weight_norm()
701
+ self.enc_q.remove_weight_norm()
702
+
703
+ def forward(
704
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
705
+ ): # y是spec不需要了现在
706
+ g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
707
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
708
+ x = self.flow(x, x_mask, g=g, reverse=True)
709
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
710
+ return o
711
+
712
+
713
+ class MultiPeriodDiscriminator(torch.nn.Module):
714
+ def __init__(self, use_spectral_norm=False):
715
+ super(MultiPeriodDiscriminator, self).__init__()
716
+ periods = [2, 3, 5, 7, 11, 17]
717
+ # periods = [3, 5, 7, 11, 17, 23, 37]
718
+
719
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
720
+ discs = discs + [
721
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
722
+ ]
723
+ self.discriminators = nn.ModuleList(discs)
724
+
725
+ def forward(self, y, y_hat):
726
+ y_d_rs = [] #
727
+ y_d_gs = []
728
+ fmap_rs = []
729
+ fmap_gs = []
730
+ for i, d in enumerate(self.discriminators):
731
+ y_d_r, fmap_r = d(y)
732
+ y_d_g, fmap_g = d(y_hat)
733
+ # for j in range(len(fmap_r)):
734
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
735
+ y_d_rs.append(y_d_r)
736
+ y_d_gs.append(y_d_g)
737
+ fmap_rs.append(fmap_r)
738
+ fmap_gs.append(fmap_g)
739
+
740
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
741
+
742
+
743
+ class DiscriminatorS(torch.nn.Module):
744
+ def __init__(self, use_spectral_norm=False):
745
+ super(DiscriminatorS, self).__init__()
746
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
747
+ self.convs = nn.ModuleList(
748
+ [
749
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
750
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
751
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
752
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
753
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
754
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
755
+ ]
756
+ )
757
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
758
+
759
+ def forward(self, x):
760
+ fmap = []
761
+
762
+ for l in self.convs:
763
+ x = l(x)
764
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
765
+ fmap.append(x)
766
+ x = self.conv_post(x)
767
+ fmap.append(x)
768
+ x = torch.flatten(x, 1, -1)
769
+
770
+ return x, fmap
771
+
772
+
773
+ class DiscriminatorP(torch.nn.Module):
774
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
775
+ super(DiscriminatorP, self).__init__()
776
+ self.period = period
777
+ self.use_spectral_norm = use_spectral_norm
778
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
779
+ self.convs = nn.ModuleList(
780
+ [
781
+ norm_f(
782
+ Conv2d(
783
+ 1,
784
+ 32,
785
+ (kernel_size, 1),
786
+ (stride, 1),
787
+ padding=(get_padding(kernel_size, 1), 0),
788
+ )
789
+ ),
790
+ norm_f(
791
+ Conv2d(
792
+ 32,
793
+ 128,
794
+ (kernel_size, 1),
795
+ (stride, 1),
796
+ padding=(get_padding(kernel_size, 1), 0),
797
+ )
798
+ ),
799
+ norm_f(
800
+ Conv2d(
801
+ 128,
802
+ 512,
803
+ (kernel_size, 1),
804
+ (stride, 1),
805
+ padding=(get_padding(kernel_size, 1), 0),
806
+ )
807
+ ),
808
+ norm_f(
809
+ Conv2d(
810
+ 512,
811
+ 1024,
812
+ (kernel_size, 1),
813
+ (stride, 1),
814
+ padding=(get_padding(kernel_size, 1), 0),
815
+ )
816
+ ),
817
+ norm_f(
818
+ Conv2d(
819
+ 1024,
820
+ 1024,
821
+ (kernel_size, 1),
822
+ 1,
823
+ padding=(get_padding(kernel_size, 1), 0),
824
+ )
825
+ ),
826
+ ]
827
+ )
828
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
829
+
830
+ def forward(self, x):
831
+ fmap = []
832
+
833
+ # 1d to 2d
834
+ b, c, t = x.shape
835
+ if t % self.period != 0: # pad first
836
+ n_pad = self.period - (t % self.period)
837
+ x = F.pad(x, (0, n_pad), "reflect")
838
+ t = t + n_pad
839
+ x = x.view(b, c, t // self.period, self.period)
840
+
841
+ for l in self.convs:
842
+ x = l(x)
843
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
844
+ fmap.append(x)
845
+ x = self.conv_post(x)
846
+ fmap.append(x)
847
+ x = torch.flatten(x, 1, -1)
848
+
849
+ return x, fmap
src/infer_pack/modules.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ from src.infer_pack import commons
13
+ from src.infer_pack.commons import init_weights, get_padding
14
+ from src.infer_pack.transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(
37
+ self,
38
+ in_channels,
39
+ hidden_channels,
40
+ out_channels,
41
+ kernel_size,
42
+ n_layers,
43
+ p_dropout,
44
+ ):
45
+ super().__init__()
46
+ self.in_channels = in_channels
47
+ self.hidden_channels = hidden_channels
48
+ self.out_channels = out_channels
49
+ self.kernel_size = kernel_size
50
+ self.n_layers = n_layers
51
+ self.p_dropout = p_dropout
52
+ assert n_layers > 1, "Number of layers should be larger than 0."
53
+
54
+ self.conv_layers = nn.ModuleList()
55
+ self.norm_layers = nn.ModuleList()
56
+ self.conv_layers.append(
57
+ nn.Conv1d(
58
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
+ )
60
+ )
61
+ self.norm_layers.append(LayerNorm(hidden_channels))
62
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
+ for _ in range(n_layers - 1):
64
+ self.conv_layers.append(
65
+ nn.Conv1d(
66
+ hidden_channels,
67
+ hidden_channels,
68
+ kernel_size,
69
+ padding=kernel_size // 2,
70
+ )
71
+ )
72
+ self.norm_layers.append(LayerNorm(hidden_channels))
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
+ self.proj.weight.data.zero_()
75
+ self.proj.bias.data.zero_()
76
+
77
+ def forward(self, x, x_mask):
78
+ x_org = x
79
+ for i in range(self.n_layers):
80
+ x = self.conv_layers[i](x * x_mask)
81
+ x = self.norm_layers[i](x)
82
+ x = self.relu_drop(x)
83
+ x = x_org + self.proj(x)
84
+ return x * x_mask
85
+
86
+
87
+ class DDSConv(nn.Module):
88
+ """
89
+ Dialted and Depth-Separable Convolution
90
+ """
91
+
92
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
+ super().__init__()
94
+ self.channels = channels
95
+ self.kernel_size = kernel_size
96
+ self.n_layers = n_layers
97
+ self.p_dropout = p_dropout
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.convs_sep = nn.ModuleList()
101
+ self.convs_1x1 = nn.ModuleList()
102
+ self.norms_1 = nn.ModuleList()
103
+ self.norms_2 = nn.ModuleList()
104
+ for i in range(n_layers):
105
+ dilation = kernel_size**i
106
+ padding = (kernel_size * dilation - dilation) // 2
107
+ self.convs_sep.append(
108
+ nn.Conv1d(
109
+ channels,
110
+ channels,
111
+ kernel_size,
112
+ groups=channels,
113
+ dilation=dilation,
114
+ padding=padding,
115
+ )
116
+ )
117
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
+ self.norms_1.append(LayerNorm(channels))
119
+ self.norms_2.append(LayerNorm(channels))
120
+
121
+ def forward(self, x, x_mask, g=None):
122
+ if g is not None:
123
+ x = x + g
124
+ for i in range(self.n_layers):
125
+ y = self.convs_sep[i](x * x_mask)
126
+ y = self.norms_1[i](y)
127
+ y = F.gelu(y)
128
+ y = self.convs_1x1[i](y)
129
+ y = self.norms_2[i](y)
130
+ y = F.gelu(y)
131
+ y = self.drop(y)
132
+ x = x + y
133
+ return x * x_mask
134
+
135
+
136
+ class WN(torch.nn.Module):
137
+ def __init__(
138
+ self,
139
+ hidden_channels,
140
+ kernel_size,
141
+ dilation_rate,
142
+ n_layers,
143
+ gin_channels=0,
144
+ p_dropout=0,
145
+ ):
146
+ super(WN, self).__init__()
147
+ assert kernel_size % 2 == 1
148
+ self.hidden_channels = hidden_channels
149
+ self.kernel_size = (kernel_size,)
150
+ self.dilation_rate = dilation_rate
151
+ self.n_layers = n_layers
152
+ self.gin_channels = gin_channels
153
+ self.p_dropout = p_dropout
154
+
155
+ self.in_layers = torch.nn.ModuleList()
156
+ self.res_skip_layers = torch.nn.ModuleList()
157
+ self.drop = nn.Dropout(p_dropout)
158
+
159
+ if gin_channels != 0:
160
+ cond_layer = torch.nn.Conv1d(
161
+ gin_channels, 2 * hidden_channels * n_layers, 1
162
+ )
163
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
164
+
165
+ for i in range(n_layers):
166
+ dilation = dilation_rate**i
167
+ padding = int((kernel_size * dilation - dilation) / 2)
168
+ in_layer = torch.nn.Conv1d(
169
+ hidden_channels,
170
+ 2 * hidden_channels,
171
+ kernel_size,
172
+ dilation=dilation,
173
+ padding=padding,
174
+ )
175
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
176
+ self.in_layers.append(in_layer)
177
+
178
+ # last one is not necessary
179
+ if i < n_layers - 1:
180
+ res_skip_channels = 2 * hidden_channels
181
+ else:
182
+ res_skip_channels = hidden_channels
183
+
184
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
185
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
186
+ self.res_skip_layers.append(res_skip_layer)
187
+
188
+ def forward(self, x, x_mask, g=None, **kwargs):
189
+ output = torch.zeros_like(x)
190
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
191
+
192
+ if g is not None:
193
+ g = self.cond_layer(g)
194
+
195
+ for i in range(self.n_layers):
196
+ x_in = self.in_layers[i](x)
197
+ if g is not None:
198
+ cond_offset = i * 2 * self.hidden_channels
199
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
200
+ else:
201
+ g_l = torch.zeros_like(x_in)
202
+
203
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
204
+ acts = self.drop(acts)
205
+
206
+ res_skip_acts = self.res_skip_layers[i](acts)
207
+ if i < self.n_layers - 1:
208
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
209
+ x = (x + res_acts) * x_mask
210
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
211
+ else:
212
+ output = output + res_skip_acts
213
+ return output * x_mask
214
+
215
+ def remove_weight_norm(self):
216
+ if self.gin_channels != 0:
217
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
218
+ for l in self.in_layers:
219
+ torch.nn.utils.remove_weight_norm(l)
220
+ for l in self.res_skip_layers:
221
+ torch.nn.utils.remove_weight_norm(l)
222
+
223
+
224
+ class ResBlock1(torch.nn.Module):
225
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
226
+ super(ResBlock1, self).__init__()
227
+ self.convs1 = nn.ModuleList(
228
+ [
229
+ weight_norm(
230
+ Conv1d(
231
+ channels,
232
+ channels,
233
+ kernel_size,
234
+ 1,
235
+ dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]),
237
+ )
238
+ ),
239
+ weight_norm(
240
+ Conv1d(
241
+ channels,
242
+ channels,
243
+ kernel_size,
244
+ 1,
245
+ dilation=dilation[1],
246
+ padding=get_padding(kernel_size, dilation[1]),
247
+ )
248
+ ),
249
+ weight_norm(
250
+ Conv1d(
251
+ channels,
252
+ channels,
253
+ kernel_size,
254
+ 1,
255
+ dilation=dilation[2],
256
+ padding=get_padding(kernel_size, dilation[2]),
257
+ )
258
+ ),
259
+ ]
260
+ )
261
+ self.convs1.apply(init_weights)
262
+
263
+ self.convs2 = nn.ModuleList(
264
+ [
265
+ weight_norm(
266
+ Conv1d(
267
+ channels,
268
+ channels,
269
+ kernel_size,
270
+ 1,
271
+ dilation=1,
272
+ padding=get_padding(kernel_size, 1),
273
+ )
274
+ ),
275
+ weight_norm(
276
+ Conv1d(
277
+ channels,
278
+ channels,
279
+ kernel_size,
280
+ 1,
281
+ dilation=1,
282
+ padding=get_padding(kernel_size, 1),
283
+ )
284
+ ),
285
+ weight_norm(
286
+ Conv1d(
287
+ channels,
288
+ channels,
289
+ kernel_size,
290
+ 1,
291
+ dilation=1,
292
+ padding=get_padding(kernel_size, 1),
293
+ )
294
+ ),
295
+ ]
296
+ )
297
+ self.convs2.apply(init_weights)
298
+
299
+ def forward(self, x, x_mask=None):
300
+ for c1, c2 in zip(self.convs1, self.convs2):
301
+ xt = F.leaky_relu(x, LRELU_SLOPE)
302
+ if x_mask is not None:
303
+ xt = xt * x_mask
304
+ xt = c1(xt)
305
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
306
+ if x_mask is not None:
307
+ xt = xt * x_mask
308
+ xt = c2(xt)
309
+ x = xt + x
310
+ if x_mask is not None:
311
+ x = x * x_mask
312
+ return x
313
+
314
+ def remove_weight_norm(self):
315
+ for l in self.convs1:
316
+ remove_weight_norm(l)
317
+ for l in self.convs2:
318
+ remove_weight_norm(l)
319
+
320
+
321
+ class ResBlock2(torch.nn.Module):
322
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
323
+ super(ResBlock2, self).__init__()
324
+ self.convs = nn.ModuleList(
325
+ [
326
+ weight_norm(
327
+ Conv1d(
328
+ channels,
329
+ channels,
330
+ kernel_size,
331
+ 1,
332
+ dilation=dilation[0],
333
+ padding=get_padding(kernel_size, dilation[0]),
334
+ )
335
+ ),
336
+ weight_norm(
337
+ Conv1d(
338
+ channels,
339
+ channels,
340
+ kernel_size,
341
+ 1,
342
+ dilation=dilation[1],
343
+ padding=get_padding(kernel_size, dilation[1]),
344
+ )
345
+ ),
346
+ ]
347
+ )
348
+ self.convs.apply(init_weights)
349
+
350
+ def forward(self, x, x_mask=None):
351
+ for c in self.convs:
352
+ xt = F.leaky_relu(x, LRELU_SLOPE)
353
+ if x_mask is not None:
354
+ xt = xt * x_mask
355
+ xt = c(xt)
356
+ x = xt + x
357
+ if x_mask is not None:
358
+ x = x * x_mask
359
+ return x
360
+
361
+ def remove_weight_norm(self):
362
+ for l in self.convs:
363
+ remove_weight_norm(l)
364
+
365
+
366
+ class Log(nn.Module):
367
+ def forward(self, x, x_mask, reverse=False, **kwargs):
368
+ if not reverse:
369
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
370
+ logdet = torch.sum(-y, [1, 2])
371
+ return y, logdet
372
+ else:
373
+ x = torch.exp(x) * x_mask
374
+ return x
375
+
376
+
377
+ class Flip(nn.Module):
378
+ def forward(self, x, *args, reverse=False, **kwargs):
379
+ x = torch.flip(x, [1])
380
+ if not reverse:
381
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
382
+ return x, logdet
383
+ else:
384
+ return x
385
+
386
+
387
+ class ElementwiseAffine(nn.Module):
388
+ def __init__(self, channels):
389
+ super().__init__()
390
+ self.channels = channels
391
+ self.m = nn.Parameter(torch.zeros(channels, 1))
392
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
393
+
394
+ def forward(self, x, x_mask, reverse=False, **kwargs):
395
+ if not reverse:
396
+ y = self.m + torch.exp(self.logs) * x
397
+ y = y * x_mask
398
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
399
+ return y, logdet
400
+ else:
401
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
402
+ return x
403
+
404
+
405
+ class ResidualCouplingLayer(nn.Module):
406
+ def __init__(
407
+ self,
408
+ channels,
409
+ hidden_channels,
410
+ kernel_size,
411
+ dilation_rate,
412
+ n_layers,
413
+ p_dropout=0,
414
+ gin_channels=0,
415
+ mean_only=False,
416
+ ):
417
+ assert channels % 2 == 0, "channels should be divisible by 2"
418
+ super().__init__()
419
+ self.channels = channels
420
+ self.hidden_channels = hidden_channels
421
+ self.kernel_size = kernel_size
422
+ self.dilation_rate = dilation_rate
423
+ self.n_layers = n_layers
424
+ self.half_channels = channels // 2
425
+ self.mean_only = mean_only
426
+
427
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
428
+ self.enc = WN(
429
+ hidden_channels,
430
+ kernel_size,
431
+ dilation_rate,
432
+ n_layers,
433
+ p_dropout=p_dropout,
434
+ gin_channels=gin_channels,
435
+ )
436
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
437
+ self.post.weight.data.zero_()
438
+ self.post.bias.data.zero_()
439
+
440
+ def forward(self, x, x_mask, g=None, reverse=False):
441
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
442
+ h = self.pre(x0) * x_mask
443
+ h = self.enc(h, x_mask, g=g)
444
+ stats = self.post(h) * x_mask
445
+ if not self.mean_only:
446
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
447
+ else:
448
+ m = stats
449
+ logs = torch.zeros_like(m)
450
+
451
+ if not reverse:
452
+ x1 = m + x1 * torch.exp(logs) * x_mask
453
+ x = torch.cat([x0, x1], 1)
454
+ logdet = torch.sum(logs, [1, 2])
455
+ return x, logdet
456
+ else:
457
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
458
+ x = torch.cat([x0, x1], 1)
459
+ return x
460
+
461
+ def remove_weight_norm(self):
462
+ self.enc.remove_weight_norm()
463
+
464
+
465
+ class ConvFlow(nn.Module):
466
+ def __init__(
467
+ self,
468
+ in_channels,
469
+ filter_channels,
470
+ kernel_size,
471
+ n_layers,
472
+ num_bins=10,
473
+ tail_bound=5.0,
474
+ ):
475
+ super().__init__()
476
+ self.in_channels = in_channels
477
+ self.filter_channels = filter_channels
478
+ self.kernel_size = kernel_size
479
+ self.n_layers = n_layers
480
+ self.num_bins = num_bins
481
+ self.tail_bound = tail_bound
482
+ self.half_channels = in_channels // 2
483
+
484
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
485
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
486
+ self.proj = nn.Conv1d(
487
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
488
+ )
489
+ self.proj.weight.data.zero_()
490
+ self.proj.bias.data.zero_()
491
+
492
+ def forward(self, x, x_mask, g=None, reverse=False):
493
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
494
+ h = self.pre(x0)
495
+ h = self.convs(h, x_mask, g=g)
496
+ h = self.proj(h) * x_mask
497
+
498
+ b, c, t = x0.shape
499
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
500
+
501
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
502
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
503
+ self.filter_channels
504
+ )
505
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
506
+
507
+ x1, logabsdet = piecewise_rational_quadratic_transform(
508
+ x1,
509
+ unnormalized_widths,
510
+ unnormalized_heights,
511
+ unnormalized_derivatives,
512
+ inverse=reverse,
513
+ tails="linear",
514
+ tail_bound=self.tail_bound,
515
+ )
516
+
517
+ x = torch.cat([x0, x1], 1) * x_mask
518
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
519
+ if not reverse:
520
+ return x, logdet
521
+ else:
522
+ return x
src/infer_pack/transforms.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.0,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
23
+ ):
24
+ if tails is None:
25
+ spline_fn = rational_quadratic_spline
26
+ spline_kwargs = {}
27
+ else:
28
+ spline_fn = unconstrained_rational_quadratic_spline
29
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
+
31
+ outputs, logabsdet = spline_fn(
32
+ inputs=inputs,
33
+ unnormalized_widths=unnormalized_widths,
34
+ unnormalized_heights=unnormalized_heights,
35
+ unnormalized_derivatives=unnormalized_derivatives,
36
+ inverse=inverse,
37
+ min_bin_width=min_bin_width,
38
+ min_bin_height=min_bin_height,
39
+ min_derivative=min_derivative,
40
+ **spline_kwargs
41
+ )
42
+ return outputs, logabsdet
43
+
44
+
45
+ def searchsorted(bin_locations, inputs, eps=1e-6):
46
+ bin_locations[..., -1] += eps
47
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
+
49
+
50
+ def unconstrained_rational_quadratic_spline(
51
+ inputs,
52
+ unnormalized_widths,
53
+ unnormalized_heights,
54
+ unnormalized_derivatives,
55
+ inverse=False,
56
+ tails="linear",
57
+ tail_bound=1.0,
58
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
61
+ ):
62
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
+ outside_interval_mask = ~inside_interval_mask
64
+
65
+ outputs = torch.zeros_like(inputs)
66
+ logabsdet = torch.zeros_like(inputs)
67
+
68
+ if tails == "linear":
69
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
+ constant = np.log(np.exp(1 - min_derivative) - 1)
71
+ unnormalized_derivatives[..., 0] = constant
72
+ unnormalized_derivatives[..., -1] = constant
73
+
74
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
+ logabsdet[outside_interval_mask] = 0
76
+ else:
77
+ raise RuntimeError("{} tails are not implemented.".format(tails))
78
+
79
+ (
80
+ outputs[inside_interval_mask],
81
+ logabsdet[inside_interval_mask],
82
+ ) = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound,
89
+ right=tail_bound,
90
+ bottom=-tail_bound,
91
+ top=tail_bound,
92
+ min_bin_width=min_bin_width,
93
+ min_bin_height=min_bin_height,
94
+ min_derivative=min_derivative,
95
+ )
96
+
97
+ return outputs, logabsdet
98
+
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0.0,
107
+ right=1.0,
108
+ bottom=0.0,
109
+ top=1.0,
110
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
113
+ ):
114
+ if torch.min(inputs) < left or torch.max(inputs) > right:
115
+ raise ValueError("Input to a transform is not within its domain")
116
+
117
+ num_bins = unnormalized_widths.shape[-1]
118
+
119
+ if min_bin_width * num_bins > 1.0:
120
+ raise ValueError("Minimal bin width too large for the number of bins")
121
+ if min_bin_height * num_bins > 1.0:
122
+ raise ValueError("Minimal bin height too large for the number of bins")
123
+
124
+ widths = F.softmax(unnormalized_widths, dim=-1)
125
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
+ cumwidths = torch.cumsum(widths, dim=-1)
127
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
+ cumwidths = (right - left) * cumwidths + left
129
+ cumwidths[..., 0] = left
130
+ cumwidths[..., -1] = right
131
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
+
133
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
+
135
+ heights = F.softmax(unnormalized_heights, dim=-1)
136
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
+ cumheights = torch.cumsum(heights, dim=-1)
138
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
+ cumheights = (top - bottom) * cumheights + bottom
140
+ cumheights[..., 0] = bottom
141
+ cumheights[..., -1] = top
142
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
143
+
144
+ if inverse:
145
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
146
+ else:
147
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
+
149
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
+
152
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
+ delta = heights / widths
154
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
155
+
156
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
+
159
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
160
+
161
+ if inverse:
162
+ a = (inputs - input_cumheights) * (
163
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
+ ) + input_heights * (input_delta - input_derivatives)
165
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
+ )
168
+ c = -input_delta * (inputs - input_cumheights)
169
+
170
+ discriminant = b.pow(2) - 4 * a * c
171
+ assert (discriminant >= 0).all()
172
+
173
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
174
+ outputs = root * input_bin_widths + input_cumwidths
175
+
176
+ theta_one_minus_theta = root * (1 - root)
177
+ denominator = input_delta + (
178
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
+ * theta_one_minus_theta
180
+ )
181
+ derivative_numerator = input_delta.pow(2) * (
182
+ input_derivatives_plus_one * root.pow(2)
183
+ + 2 * input_delta * theta_one_minus_theta
184
+ + input_derivatives * (1 - root).pow(2)
185
+ )
186
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
+
188
+ return outputs, -logabsdet
189
+ else:
190
+ theta = (inputs - input_cumwidths) / input_bin_widths
191
+ theta_one_minus_theta = theta * (1 - theta)
192
+
193
+ numerator = input_heights * (
194
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
+ )
196
+ denominator = input_delta + (
197
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
+ * theta_one_minus_theta
199
+ )
200
+ outputs = input_cumheights + numerator / denominator
201
+
202
+ derivative_numerator = input_delta.pow(2) * (
203
+ input_derivatives_plus_one * theta.pow(2)
204
+ + 2 * input_delta * theta_one_minus_theta
205
+ + input_derivatives * (1 - theta).pow(2)
206
+ )
207
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
+
209
+ return outputs, logabsdet
src/main.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import gc
3
+ import hashlib
4
+ import json
5
+ import os
6
+ import shlex
7
+ import subprocess
8
+ from contextlib import suppress
9
+ from urllib.parse import urlparse, parse_qs
10
+
11
+ import gradio as gr
12
+ import librosa
13
+ import numpy as np
14
+ import soundfile as sf
15
+ import sox
16
+ import yt_dlp
17
+ from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
18
+ from pedalboard.io import AudioFile
19
+ from pydub import AudioSegment
20
+
21
+ from src.mdx import run_mdx, run_roformer
22
+ from src.rvc import Config, load_hubert, get_vc, rvc_infer
23
+
24
+ BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
25
+
26
+ mdxnet_models_dir = os.path.join(BASE_DIR, 'mdxnet_models')
27
+ rvc_models_dir = os.path.join(BASE_DIR, 'rvc_models')
28
+ output_dir = os.path.join(BASE_DIR, 'song_output')
29
+
30
+
31
+ def get_youtube_video_id(url, ignore_playlist=True):
32
+ """
33
+ Examples:
34
+ http://youtu.be/SA2iWivDJiE
35
+ http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
36
+ http://www.youtube.com/embed/SA2iWivDJiE
37
+ http://www.youtube.com/v/SA2iWivDJiE?version=3&amp;hl=en_US
38
+ """
39
+ query = urlparse(url)
40
+ if query.hostname == 'youtu.be':
41
+ if query.path[1:] == 'watch':
42
+ return query.query[2:]
43
+ return query.path[1:]
44
+
45
+ if query.hostname in {'www.youtube.com', 'youtube.com', 'music.youtube.com'}:
46
+ if not ignore_playlist:
47
+ # use case: get playlist id not current video in playlist
48
+ with suppress(KeyError):
49
+ return parse_qs(query.query)['list'][0]
50
+ if query.path == '/watch':
51
+ return parse_qs(query.query)['v'][0]
52
+ if query.path[:7] == '/watch/':
53
+ return query.path.split('/')[1]
54
+ if query.path[:7] == '/embed/':
55
+ return query.path.split('/')[2]
56
+ if query.path[:3] == '/v/':
57
+ return query.path.split('/')[2]
58
+
59
+ # returns None for invalid YouTube url
60
+ return None
61
+
62
+
63
+ def yt_download(link):
64
+ ydl_opts = {
65
+ 'format': 'bestaudio',
66
+ 'outtmpl': '%(title)s',
67
+ 'nocheckcertificate': True,
68
+ 'ignoreerrors': True,
69
+ 'no_warnings': True,
70
+ 'quiet': True,
71
+ 'extractaudio': True,
72
+ 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3'}],
73
+ }
74
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
75
+ result = ydl.extract_info(link, download=True)
76
+ download_path = ydl.prepare_filename(result, outtmpl='%(title)s.mp3')
77
+
78
+ return download_path
79
+
80
+
81
+ def raise_exception(error_msg, is_webui):
82
+ if is_webui:
83
+ raise gr.Error(error_msg)
84
+ else:
85
+ raise Exception(error_msg)
86
+
87
+
88
+ def get_rvc_model(voice_model, is_webui):
89
+ rvc_model_filename, rvc_index_filename = None, None
90
+ model_dir = os.path.join(rvc_models_dir, voice_model)
91
+ for file in os.listdir(model_dir):
92
+ ext = os.path.splitext(file)[1]
93
+ if ext == '.pth':
94
+ rvc_model_filename = file
95
+ if ext == '.index':
96
+ rvc_index_filename = file
97
+
98
+ if rvc_model_filename is None:
99
+ error_msg = f'No model file exists in {model_dir}.'
100
+ raise_exception(error_msg, is_webui)
101
+
102
+ return os.path.join(model_dir, rvc_model_filename), os.path.join(model_dir, rvc_index_filename) if rvc_index_filename else ''
103
+
104
+
105
+ def get_audio_paths(song_dir):
106
+ orig_song_path = None
107
+ instrumentals_path = None
108
+ main_vocals_dereverb_path = None
109
+ backup_vocals_path = None
110
+
111
+ for file in os.listdir(song_dir):
112
+ if file.endswith('_Instrumental.wav'):
113
+ instrumentals_path = os.path.join(song_dir, file)
114
+ orig_song_path = instrumentals_path.replace('_Instrumental', '')
115
+
116
+ elif file.endswith('_Vocals_Main_DeReverb.wav'):
117
+ main_vocals_dereverb_path = os.path.join(song_dir, file)
118
+
119
+ elif file.endswith('_Vocals_Backup.wav'):
120
+ backup_vocals_path = os.path.join(song_dir, file)
121
+
122
+ return orig_song_path, instrumentals_path, main_vocals_dereverb_path, backup_vocals_path
123
+
124
+
125
+ def convert_to_stereo(audio_path):
126
+ wave, sr = librosa.load(audio_path, mono=False, sr=44100)
127
+
128
+ # check if mono
129
+ if type(wave[0]) != np.ndarray:
130
+ stereo_path = f'{os.path.splitext(audio_path)[0]}_stereo.wav'
131
+ command = shlex.split(f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"')
132
+ subprocess.run(command)
133
+ return stereo_path
134
+ else:
135
+ return audio_path
136
+
137
+
138
+ def pitch_shift(audio_path, pitch_change):
139
+ output_path = f'{os.path.splitext(audio_path)[0]}_p{pitch_change}.wav'
140
+ if not os.path.exists(output_path):
141
+ y, sr = sf.read(audio_path)
142
+ tfm = sox.Transformer()
143
+ tfm.pitch(pitch_change)
144
+ y_shifted = tfm.build_array(input_array=y, sample_rate_in=sr)
145
+ sf.write(output_path, y_shifted, sr)
146
+
147
+ return output_path
148
+
149
+
150
+ def get_hash(filepath):
151
+ with open(filepath, 'rb') as f:
152
+ file_hash = hashlib.blake2b()
153
+ while chunk := f.read(8192):
154
+ file_hash.update(chunk)
155
+
156
+ return file_hash.hexdigest()[:11]
157
+
158
+
159
+ def display_progress(message, percent, is_webui, progress=None):
160
+ if is_webui:
161
+ progress(percent, desc=message)
162
+ else:
163
+ print(message)
164
+
165
+
166
+ def preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type, progress=None):
167
+ keep_orig = False
168
+ if input_type == 'yt':
169
+ display_progress('[~] Downloading song...', 0, is_webui, progress)
170
+ song_link = song_input.split('&')[0]
171
+ orig_song_path = yt_download(song_link)
172
+ elif input_type == 'local':
173
+ orig_song_path = song_input
174
+ keep_orig = True
175
+ else:
176
+ orig_song_path = None
177
+
178
+ song_output_dir = os.path.join(output_dir, song_id)
179
+ orig_song_path = convert_to_stereo(orig_song_path)
180
+
181
+ display_progress('[~] Separating Vocals from Instrumental...', 0.1, is_webui, progress)
182
+ vocals_path, instrumentals_path = run_roformer(mdx_model_params, song_output_dir, 'model_bs_roformer_ep_317_sdr_12.9755.ckpt', orig_song_path, denoise=True, keep_orig=keep_orig)
183
+
184
+ display_progress('[~] Separating Main Vocals from Backup Vocals...', 0.2, is_webui, progress)
185
+ backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR_MDXNET_KARA_2.onnx'), vocals_path, suffix='Backup', invert_suffix='Main', denoise=True)
186
+
187
+ display_progress('[~] Applying DeReverb to Vocals...', 0.3, is_webui, progress)
188
+ _, main_vocals_dereverb_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'Reverb_HQ_By_FoxJoy.onnx'), main_vocals_path, invert_suffix='DeReverb', exclude_main=True, denoise=True)
189
+
190
+ return orig_song_path, vocals_path, instrumentals_path, main_vocals_path, backup_vocals_path, main_vocals_dereverb_path
191
+
192
+
193
+ def voice_change(voice_model, vocals_path, output_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, is_webui):
194
+ rvc_model_path, rvc_index_path = get_rvc_model(voice_model, is_webui)
195
+ device = 'cuda:0'
196
+ config = Config(device, True)
197
+ hubert_model = load_hubert(device, config.is_half, os.path.join(rvc_models_dir, 'hubert_base.pt'))
198
+ cpt, version, net_g, tgt_sr, vc = get_vc(device, config.is_half, config, rvc_model_path)
199
+
200
+ # convert main vocals
201
+ rvc_infer(rvc_index_path, index_rate, vocals_path, output_path, pitch_change, f0_method, cpt, version, net_g, filter_radius, tgt_sr, rms_mix_rate, protect, crepe_hop_length, vc, hubert_model)
202
+ del hubert_model, cpt
203
+ gc.collect()
204
+
205
+
206
+ def add_audio_effects(audio_path, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping):
207
+ output_path = f'{os.path.splitext(audio_path)[0]}_mixed.wav'
208
+
209
+ # Initialize audio effects plugins
210
+ board = Pedalboard(
211
+ [
212
+ HighpassFilter(),
213
+ Compressor(ratio=4, threshold_db=-15),
214
+ Reverb(room_size=reverb_rm_size, dry_level=reverb_dry, wet_level=reverb_wet, damping=reverb_damping)
215
+ ]
216
+ )
217
+
218
+ with AudioFile(audio_path) as f:
219
+ with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o:
220
+ # Read one second of audio at a time, until the file is empty:
221
+ while f.tell() < f.frames:
222
+ chunk = f.read(int(f.samplerate))
223
+ effected = board(chunk, f.samplerate, reset=False)
224
+ o.write(effected)
225
+
226
+ return output_path
227
+
228
+
229
+ def combine_audio(audio_paths, output_path, main_gain, backup_gain, inst_gain, output_format):
230
+ main_vocal_audio = AudioSegment.from_wav(audio_paths[0]) - 4 + main_gain
231
+ backup_vocal_audio = AudioSegment.from_wav(audio_paths[1]) - 6 + backup_gain
232
+ instrumental_audio = AudioSegment.from_wav(audio_paths[2]) - 7 + inst_gain
233
+ main_vocal_audio.overlay(backup_vocal_audio).overlay(instrumental_audio).export(output_path, format=output_format)
234
+
235
+ def song_cover_pipeline(song_input, voice_model, pitch_change, keep_files,
236
+ is_webui=0, main_gain=0, backup_gain=0, inst_gain=0, index_rate=0.5, filter_radius=3,
237
+ rms_mix_rate=0.25, f0_method='rmvpe', crepe_hop_length=128, protect=0.33, pitch_change_all=0,
238
+ reverb_rm_size=0.15, reverb_wet=0.2, reverb_dry=0.8, reverb_damping=0.7, output_format='mp3',
239
+ progress=gr.Progress()):
240
+ try:
241
+ if not song_input or not voice_model:
242
+ raise_exception('Ensure that the song input field and voice model field is filled.', is_webui)
243
+
244
+ display_progress('[~] Starting AI Cover Generation Pipeline...', 0, is_webui, progress)
245
+
246
+ with open(os.path.join(mdxnet_models_dir, 'model_data.json')) as infile:
247
+ mdx_model_params = json.load(infile)
248
+
249
+ # if youtube url
250
+ if urlparse(song_input).scheme == 'https':
251
+ input_type = 'yt'
252
+ song_id = get_youtube_video_id(song_input)
253
+ if song_id is None:
254
+ error_msg = 'Invalid YouTube url.'
255
+ raise_exception(error_msg, is_webui)
256
+
257
+ # local audio file
258
+ else:
259
+ input_type = 'local'
260
+ song_input = song_input.strip('\"')
261
+ if os.path.exists(song_input):
262
+ song_id = get_hash(song_input)
263
+ else:
264
+ error_msg = f'{song_input} does not exist.'
265
+ song_id = None
266
+ raise_exception(error_msg, is_webui)
267
+
268
+ song_dir = os.path.join(output_dir, song_id)
269
+
270
+ if not os.path.exists(song_dir):
271
+ os.makedirs(song_dir)
272
+ orig_song_path, vocals_path, instrumentals_path, main_vocals_path, backup_vocals_path, main_vocals_dereverb_path = preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type, progress)
273
+
274
+ else:
275
+ vocals_path, main_vocals_path = None, None
276
+ paths = get_audio_paths(song_dir)
277
+
278
+ # if any of the audio files aren't available or keep intermediate files, rerun preprocess
279
+ if any(path is None for path in paths) or keep_files:
280
+ orig_song_path, vocals_path, instrumentals_path, main_vocals_path, backup_vocals_path, main_vocals_dereverb_path = preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type, progress)
281
+ else:
282
+ orig_song_path, instrumentals_path, main_vocals_dereverb_path, backup_vocals_path = paths
283
+
284
+ pitch_change = pitch_change + pitch_change_all
285
+ ai_vocals_path = os.path.join(song_dir, f'{os.path.splitext(os.path.basename(orig_song_path))[0]}_lead_{voice_model}_p{pitch_change}_i{index_rate}_fr{filter_radius}_rms{rms_mix_rate}_pro{protect}_{f0_method}{"" if f0_method != "mangio-crepe" else f"_{crepe_hop_length}"}.wav')
286
+ ai_backing_path = os.path.join(song_dir, f'{os.path.splitext(os.path.basename(orig_song_path))[0]}_backing_{voice_model}_p{pitch_change}_i{index_rate}_fr{filter_radius}_rms{rms_mix_rate}_pro{protect}_{f0_method}{"" if f0_method != "mangio-crepe" else f"_{crepe_hop_length}"}.wav')
287
+
288
+ ai_cover_path = os.path.join(song_dir, f'{os.path.splitext(os.path.basename(orig_song_path))[0]} ({voice_model} Ver).{output_format}')
289
+ ai_cover_backing_path = os.path.join(song_dir, f'{os.path.splitext(os.path.basename(orig_song_path))[0]} ({voice_model} Ver With Backing).{output_format}')
290
+
291
+ if not os.path.exists(ai_vocals_path):
292
+ display_progress('[~] Converting lead voice using RVC...', 0.5, is_webui, progress)
293
+ voice_change(voice_model, main_vocals_dereverb_path, ai_vocals_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, is_webui)
294
+
295
+ display_progress('[~] Converting backing voice using RVC...', 0.65, is_webui, progress)
296
+ voice_change(voice_model, backup_vocals_path, ai_backing_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, is_webui)
297
+
298
+ display_progress('[~] Applying audio effects to Vocals...', 0.8, is_webui, progress)
299
+ ai_vocals_mixed_path = add_audio_effects(ai_vocals_path, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping)
300
+ ai_backing_mixed_path = add_audio_effects(ai_backing_path, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping)
301
+
302
+ if pitch_change_all != 0:
303
+ display_progress('[~] Applying overall pitch change', 0.85, is_webui, progress)
304
+ instrumentals_path = pitch_shift(instrumentals_path, pitch_change_all)
305
+ backup_vocals_path = pitch_shift(backup_vocals_path, pitch_change_all)
306
+
307
+ display_progress('[~] Combining AI Vocals and Instrumentals...', 0.9, is_webui, progress)
308
+ combine_audio([ai_vocals_mixed_path, backup_vocals_path, instrumentals_path], ai_cover_path, main_gain, backup_gain, inst_gain, output_format)
309
+ combine_audio([ai_vocals_mixed_path, ai_backing_mixed_path, instrumentals_path], ai_cover_backing_path, main_gain, backup_gain, inst_gain, output_format)
310
+
311
+ if not keep_files:
312
+ display_progress('[~] Removing intermediate audio files...', 0.95, is_webui, progress)
313
+ intermediate_files = [vocals_path, main_vocals_path, ai_vocals_mixed_path, ai_backing_mixed_path]
314
+ if pitch_change_all != 0:
315
+ intermediate_files += [instrumentals_path, backup_vocals_path]
316
+ for file in intermediate_files:
317
+ if file and os.path.exists(file):
318
+ os.remove(file)
319
+
320
+ return ai_cover_path, ai_cover_backing_path
321
+
322
+ except Exception as e:
323
+ raise_exception(str(e), is_webui)
324
+
325
+
326
+ if __name__ == '__main__':
327
+ parser = argparse.ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
328
+ parser.add_argument('-i', '--song-input', type=str, required=True, help='Link to a YouTube video or the filepath to a local mp3/wav file to create an AI cover of')
329
+ parser.add_argument('-dir', '--rvc-dirname', type=str, required=True, help='Name of the folder in the rvc_models directory containing the RVC model file and optional index file to use')
330
+ parser.add_argument('-p', '--pitch-change', type=int, required=True, help='Change the pitch of AI Vocals only. Generally, use 1 for male to female and -1 for vice-versa. (Octaves)')
331
+ parser.add_argument('-k', '--keep-files', action=argparse.BooleanOptionalAction, help='Whether to keep all intermediate audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals')
332
+ parser.add_argument('-ir', '--index-rate', type=float, default=0.5, help='A decimal number e.g. 0.5, used to reduce/resolve the timbre leakage problem. If set to 1, more biased towards the timbre quality of the training dataset')
333
+ parser.add_argument('-fr', '--filter-radius', type=int, default=3, help='A number between 0 and 7. If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness.')
334
+ parser.add_argument('-rms', '--rms-mix-rate', type=float, default=0.25, help="A decimal number e.g. 0.25. Control how much to use the original vocal's loudness (0) or a fixed loudness (1).")
335
+ parser.add_argument('-palgo', '--pitch-detection-algo', type=str, default='rmvpe', help='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals).')
336
+ parser.add_argument('-hop', '--crepe-hop-length', type=int, default=128, help='If pitch detection algo is mangio-crepe, controls how often it checks for pitch changes in milliseconds. The higher the value, the faster the conversion and less risk of voice cracks, but there is less pitch accuracy. Recommended: 128.')
337
+ parser.add_argument('-pro', '--protect', type=float, default=0.33, help='A decimal number e.g. 0.33. Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy.')
338
+ parser.add_argument('-mv', '--main-vol', type=int, default=0, help='Volume change for AI main vocals in decibels. Use -3 to decrease by 3 decibels and 3 to increase by 3 decibels')
339
+ parser.add_argument('-bv', '--backup-vol', type=int, default=0, help='Volume change for backup vocals in decibels')
340
+ parser.add_argument('-iv', '--inst-vol', type=int, default=0, help='Volume change for instrumentals in decibels')
341
+ parser.add_argument('-pall', '--pitch-change-all', type=int, default=0, help='Change the pitch/key of vocals and instrumentals. Changing this slightly reduces sound quality')
342
+ parser.add_argument('-rsize', '--reverb-size', type=float, default=0.15, help='Reverb room size between 0 and 1')
343
+ parser.add_argument('-rwet', '--reverb-wetness', type=float, default=0.2, help='Reverb wet level between 0 and 1')
344
+ parser.add_argument('-rdry', '--reverb-dryness', type=float, default=0.8, help='Reverb dry level between 0 and 1')
345
+ parser.add_argument('-rdamp', '--reverb-damping', type=float, default=0.7, help='Reverb damping between 0 and 1')
346
+ parser.add_argument('-oformat', '--output-format', type=str, default='mp3', help='Output format of audio file. mp3 for smaller file size, wav for best quality')
347
+ args = parser.parse_args()
348
+
349
+ rvc_dirname = args.rvc_dirname
350
+ if not os.path.exists(os.path.join(rvc_models_dir, rvc_dirname)):
351
+ raise Exception(f'The folder {os.path.join(rvc_models_dir, rvc_dirname)} does not exist.')
352
+
353
+ cover_path = song_cover_pipeline(args.song_input, rvc_dirname, args.pitch_change, args.keep_files,
354
+ main_gain=args.main_vol, backup_gain=args.backup_vol, inst_gain=args.inst_vol,
355
+ index_rate=args.index_rate, filter_radius=args.filter_radius,
356
+ rms_mix_rate=args.rms_mix_rate, f0_method=args.pitch_detection_algo,
357
+ crepe_hop_length=args.crepe_hop_length, protect=args.protect,
358
+ pitch_change_all=args.pitch_change_all,
359
+ reverb_rm_size=args.reverb_size, reverb_wet=args.reverb_wetness,
360
+ reverb_dry=args.reverb_dryness, reverb_damping=args.reverb_damping,
361
+ output_format=args.output_format)
362
+ print(f'[+] Cover generated at {cover_path}')
src/mdx.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import hashlib
3
+ import os
4
+ import queue
5
+ import threading
6
+ import warnings
7
+
8
+ import librosa
9
+ import numpy as np
10
+ import onnxruntime as ort
11
+ import soundfile as sf
12
+ import torch
13
+ from tqdm import tqdm
14
+
15
+ import re
16
+ import random
17
+
18
+ warnings.filterwarnings("ignore")
19
+ stem_naming = {'Vocals': 'Instrumental', 'Other': 'Instruments', 'Instrumental': 'Vocals', 'Drums': 'Drumless', 'Bass': 'Bassless'}
20
+
21
+
22
+ class MDXModel:
23
+ def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
24
+ self.dim_f = dim_f
25
+ self.dim_t = dim_t
26
+ self.dim_c = 4
27
+ self.n_fft = n_fft
28
+ self.hop = hop
29
+ self.stem_name = stem_name
30
+ self.compensation = compensation
31
+
32
+ self.n_bins = self.n_fft // 2 + 1
33
+ self.chunk_size = hop * (self.dim_t - 1)
34
+ self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
35
+
36
+ out_c = self.dim_c
37
+
38
+ self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
39
+
40
+ def stft(self, x):
41
+ x = x.reshape([-1, self.chunk_size])
42
+ x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
43
+ x = torch.view_as_real(x)
44
+ x = x.permute([0, 3, 1, 2])
45
+ x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t])
46
+ return x[:, :, :self.dim_f]
47
+
48
+ def istft(self, x, freq_pad=None):
49
+ freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
50
+ x = torch.cat([x, freq_pad], -2)
51
+ # c = 4*2 if self.target_name=='*' else 2
52
+ x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
53
+ x = x.permute([0, 2, 3, 1])
54
+ x = x.contiguous()
55
+ x = torch.view_as_complex(x)
56
+ x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
57
+ return x.reshape([-1, 2, self.chunk_size])
58
+
59
+
60
+ class MDX:
61
+ DEFAULT_SR = 44100
62
+ # Unit: seconds
63
+ DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
64
+ DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
65
+
66
+ DEFAULT_PROCESSOR = 0
67
+
68
+ def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR):
69
+
70
+ # Set the device and the provider (CPU or CUDA)
71
+ self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
72
+ self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']
73
+
74
+ self.model = params
75
+
76
+ # Load the ONNX model using ONNX Runtime
77
+ self.ort = ort.InferenceSession(model_path, providers=self.provider)
78
+ # Preload the model for faster performance
79
+ self.ort.run(None, {'input': torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
80
+ self.process = lambda spec: self.ort.run(None, {'input': spec.cpu().numpy()})[0]
81
+
82
+ self.prog = None
83
+
84
+ @staticmethod
85
+ def get_hash(model_path):
86
+ try:
87
+ with open(model_path, 'rb') as f:
88
+ f.seek(- 10000 * 1024, 2)
89
+ model_hash = hashlib.md5(f.read()).hexdigest()
90
+ except:
91
+ model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
92
+
93
+ return model_hash
94
+
95
+ @staticmethod
96
+ def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
97
+ """
98
+ Segment or join segmented wave array
99
+
100
+ Args:
101
+ wave: (np.array) Wave array to be segmented or joined
102
+ combine: (bool) If True, combines segmented wave array. If False, segments wave array.
103
+ chunk_size: (int) Size of each segment (in samples)
104
+ margin_size: (int) Size of margin between segments (in samples)
105
+
106
+ Returns:
107
+ numpy array: Segmented or joined wave array
108
+ """
109
+
110
+ if combine:
111
+ processed_wave = None # Initializing as None instead of [] for later numpy array concatenation
112
+ for segment_count, segment in enumerate(wave):
113
+ start = 0 if segment_count == 0 else margin_size
114
+ end = None if segment_count == len(wave) - 1 else -margin_size
115
+ if margin_size == 0:
116
+ end = None
117
+ if processed_wave is None: # Create array for first segment
118
+ processed_wave = segment[:, start:end]
119
+ else: # Concatenate to existing array for subsequent segments
120
+ processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1)
121
+
122
+ else:
123
+ processed_wave = []
124
+ sample_count = wave.shape[-1]
125
+
126
+ if chunk_size <= 0 or chunk_size > sample_count:
127
+ chunk_size = sample_count
128
+
129
+ if margin_size > chunk_size:
130
+ margin_size = chunk_size
131
+
132
+ for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):
133
+
134
+ margin = 0 if segment_count == 0 else margin_size
135
+ end = min(skip + chunk_size + margin_size, sample_count)
136
+ start = skip - margin
137
+
138
+ cut = wave[:, start:end].copy()
139
+ processed_wave.append(cut)
140
+
141
+ if end == sample_count:
142
+ break
143
+
144
+ return processed_wave
145
+
146
+ def pad_wave(self, wave):
147
+ """
148
+ Pad the wave array to match the required chunk size
149
+
150
+ Args:
151
+ wave: (np.array) Wave array to be padded
152
+
153
+ Returns:
154
+ tuple: (padded_wave, pad, trim)
155
+ - padded_wave: Padded wave array
156
+ - pad: Number of samples that were padded
157
+ - trim: Number of samples that were trimmed
158
+ """
159
+ n_sample = wave.shape[1]
160
+ trim = self.model.n_fft // 2
161
+ gen_size = self.model.chunk_size - 2 * trim
162
+ pad = gen_size - n_sample % gen_size
163
+
164
+ # Padded wave
165
+ wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1)
166
+
167
+ mix_waves = []
168
+ for i in range(0, n_sample + pad, gen_size):
169
+ waves = np.array(wave_p[:, i:i + self.model.chunk_size])
170
+ mix_waves.append(waves)
171
+
172
+ mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
173
+
174
+ return mix_waves, pad, trim
175
+
176
+ def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
177
+ """
178
+ Process each wave segment in a multi-threaded environment
179
+
180
+ Args:
181
+ mix_waves: (torch.Tensor) Wave segments to be processed
182
+ trim: (int) Number of samples trimmed during padding
183
+ pad: (int) Number of samples padded during padding
184
+ q: (queue.Queue) Queue to hold the processed wave segments
185
+ _id: (int) Identifier of the processed wave segment
186
+
187
+ Returns:
188
+ numpy array: Processed wave segment
189
+ """
190
+ mix_waves = mix_waves.split(1)
191
+ with torch.no_grad():
192
+ pw = []
193
+ for mix_wave in mix_waves:
194
+ self.prog.update()
195
+ spec = self.model.stft(mix_wave)
196
+ processed_spec = torch.tensor(self.process(spec))
197
+ processed_wav = self.model.istft(processed_spec.to(self.device))
198
+ processed_wav = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy()
199
+ pw.append(processed_wav)
200
+ processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
201
+ q.put({_id: processed_signal})
202
+ return processed_signal
203
+
204
+ def process_wave(self, wave: np.array, mt_threads=1):
205
+ """
206
+ Process the wave array in a multi-threaded environment
207
+
208
+ Args:
209
+ wave: (np.array) Wave array to be processed
210
+ mt_threads: (int) Number of threads to be used for processing
211
+
212
+ Returns:
213
+ numpy array: Processed wave array
214
+ """
215
+ self.prog = tqdm(total=0)
216
+ chunk = wave.shape[-1] // mt_threads
217
+ waves = self.segment(wave, False, chunk)
218
+
219
+ # Create a queue to hold the processed wave segments
220
+ q = queue.Queue()
221
+ threads = []
222
+ for c, batch in enumerate(waves):
223
+ mix_waves, pad, trim = self.pad_wave(batch)
224
+ self.prog.total = len(mix_waves) * mt_threads
225
+ thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
226
+ thread.start()
227
+ threads.append(thread)
228
+ for thread in threads:
229
+ thread.join()
230
+ self.prog.close()
231
+
232
+ processed_batches = []
233
+ while not q.empty():
234
+ processed_batches.append(q.get())
235
+ processed_batches = [list(wave.values())[0] for wave in
236
+ sorted(processed_batches, key=lambda d: list(d.keys())[0])]
237
+ assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!'
238
+ return self.segment(processed_batches, True, chunk)
239
+
240
+
241
+ def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2):
242
+ device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
243
+
244
+ device_properties = torch.cuda.get_device_properties(device)
245
+ vram_gb = device_properties.total_memory / 1024**3
246
+ m_threads = 1 if vram_gb < 8 else 2
247
+
248
+ model_hash = MDX.get_hash(model_path)
249
+ mp = model_params.get(model_hash)
250
+ model = MDXModel(
251
+ device,
252
+ dim_f=mp["mdx_dim_f_set"],
253
+ dim_t=2 ** mp["mdx_dim_t_set"],
254
+ n_fft=mp["mdx_n_fft_scale_set"],
255
+ stem_name=mp["primary_stem"],
256
+ compensation=mp["compensate"]
257
+ )
258
+
259
+ mdx_sess = MDX(model_path, model)
260
+ wave, sr = librosa.load(filename, mono=False, sr=44100)
261
+ # normalizing input wave gives better output
262
+ peak = max(np.max(wave), abs(np.min(wave)))
263
+ wave /= peak
264
+ if denoise:
265
+ wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
266
+ wave_processed *= 0.5
267
+ else:
268
+ wave_processed = mdx_sess.process_wave(wave, m_threads)
269
+ # return to previous peak
270
+ wave_processed *= peak
271
+ stem_name = model.stem_name if suffix is None else suffix
272
+
273
+ main_filepath = None
274
+ if not exclude_main:
275
+ main_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav")
276
+ sf.write(main_filepath, wave_processed.T, sr)
277
+
278
+ invert_filepath = None
279
+ if not exclude_inversion:
280
+ diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix
281
+ stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
282
+ invert_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav")
283
+ sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
284
+
285
+ if not keep_orig:
286
+ os.remove(filename)
287
+
288
+ del mdx_sess, wave_processed, wave
289
+ if torch.cuda.is_available():
290
+ torch.cuda.empty_cache()
291
+ gc.collect()
292
+ return main_filepath, invert_filepath
293
+
294
+ def run_roformer(model_params, output_dir, model_name, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2):
295
+ os.makedirs(output_dir, exist_ok=True)
296
+
297
+ # Load and process the audio
298
+ wave, sr = librosa.load(filename, mono=False, sr=44100)
299
+ base_name = os.path.splitext(os.path.basename(filename))[0]
300
+
301
+ roformer_output_format = 'wav'
302
+ roformer_overlap = 4
303
+ roformer_segment_size = 256
304
+ print(f"output_dir: {output_dir}")
305
+ prompt = f'audio-separator "{filename}" --model_filename {model_name} --output_dir="{output_dir}" --output_format={roformer_output_format} --normalization=0.9 --mdxc_overlap={roformer_overlap} --mdxc_segment_size={roformer_segment_size}'
306
+ os.system(prompt)
307
+
308
+ vocals_file = f"{base_name}_Vocals.wav"
309
+ instrumental_file = f"{base_name}_Instrumental.wav"
310
+
311
+ main_filepath = None
312
+ invert_filepath = None
313
+
314
+ if not exclude_main:
315
+ main_filepath = os.path.join(output_dir, vocals_file)
316
+ if os.path.exists(os.path.join(output_dir, f"{base_name}_(Vocals)_{model_name.replace('.9755.ckpt', '')}.wav")):
317
+ os.rename(os.path.join(output_dir, f"{base_name}_(Vocals)_{model_name.replace('.9755.ckpt', '')}.wav"), main_filepath)
318
+
319
+ if not exclude_inversion:
320
+ invert_filepath = os.path.join(output_dir, instrumental_file)
321
+ if os.path.exists(os.path.join(output_dir, f"{base_name}_(Instrumental)_{model_name.replace('.9755.ckpt', '')}.wav")):
322
+ os.rename(os.path.join(output_dir, f"{base_name}_(Instrumental)_{model_name.replace('.9755.ckpt', '')}.wav"), invert_filepath)
323
+
324
+ if not keep_orig:
325
+ os.remove(filename)
326
+
327
+ return main_filepath, invert_filepath
src/my_utils.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ffmpeg
2
+ import numpy as np
3
+
4
+
5
+ def load_audio(file, sr):
6
+ try:
7
+ # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
8
+ # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
9
+ # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
10
+ file = (
11
+ file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
12
+ ) # 防止小白拷路径头尾带了空格和"和回车
13
+ out, _ = (
14
+ ffmpeg.input(file, threads=0)
15
+ .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
16
+ .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
17
+ )
18
+ except Exception as e:
19
+ raise RuntimeError(f"Failed to load audio: {e}")
20
+
21
+ return np.frombuffer(out, np.float32).flatten()
src/rmvpe.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from librosa.filters import mel
6
+
7
+
8
+ class BiGRU(nn.Module):
9
+ def __init__(self, input_features, hidden_features, num_layers):
10
+ super(BiGRU, self).__init__()
11
+ self.gru = nn.GRU(
12
+ input_features,
13
+ hidden_features,
14
+ num_layers=num_layers,
15
+ batch_first=True,
16
+ bidirectional=True,
17
+ )
18
+
19
+ def forward(self, x):
20
+ return self.gru(x)[0]
21
+
22
+
23
+ class ConvBlockRes(nn.Module):
24
+ def __init__(self, in_channels, out_channels, momentum=0.01):
25
+ super(ConvBlockRes, self).__init__()
26
+ self.conv = nn.Sequential(
27
+ nn.Conv2d(
28
+ in_channels=in_channels,
29
+ out_channels=out_channels,
30
+ kernel_size=(3, 3),
31
+ stride=(1, 1),
32
+ padding=(1, 1),
33
+ bias=False,
34
+ ),
35
+ nn.BatchNorm2d(out_channels, momentum=momentum),
36
+ nn.ReLU(),
37
+ nn.Conv2d(
38
+ in_channels=out_channels,
39
+ out_channels=out_channels,
40
+ kernel_size=(3, 3),
41
+ stride=(1, 1),
42
+ padding=(1, 1),
43
+ bias=False,
44
+ ),
45
+ nn.BatchNorm2d(out_channels, momentum=momentum),
46
+ nn.ReLU(),
47
+ )
48
+ if in_channels != out_channels:
49
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
50
+ self.is_shortcut = True
51
+ else:
52
+ self.is_shortcut = False
53
+
54
+ def forward(self, x):
55
+ if self.is_shortcut:
56
+ return self.conv(x) + self.shortcut(x)
57
+ else:
58
+ return self.conv(x) + x
59
+
60
+
61
+ class Encoder(nn.Module):
62
+ def __init__(
63
+ self,
64
+ in_channels,
65
+ in_size,
66
+ n_encoders,
67
+ kernel_size,
68
+ n_blocks,
69
+ out_channels=16,
70
+ momentum=0.01,
71
+ ):
72
+ super(Encoder, self).__init__()
73
+ self.n_encoders = n_encoders
74
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
75
+ self.layers = nn.ModuleList()
76
+ self.latent_channels = []
77
+ for i in range(self.n_encoders):
78
+ self.layers.append(
79
+ ResEncoderBlock(
80
+ in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
81
+ )
82
+ )
83
+ self.latent_channels.append([out_channels, in_size])
84
+ in_channels = out_channels
85
+ out_channels *= 2
86
+ in_size //= 2
87
+ self.out_size = in_size
88
+ self.out_channel = out_channels
89
+
90
+ def forward(self, x):
91
+ concat_tensors = []
92
+ x = self.bn(x)
93
+ for i in range(self.n_encoders):
94
+ _, x = self.layers[i](x)
95
+ concat_tensors.append(_)
96
+ return x, concat_tensors
97
+
98
+
99
+ class ResEncoderBlock(nn.Module):
100
+ def __init__(
101
+ self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
102
+ ):
103
+ super(ResEncoderBlock, self).__init__()
104
+ self.n_blocks = n_blocks
105
+ self.conv = nn.ModuleList()
106
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
107
+ for i in range(n_blocks - 1):
108
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
109
+ self.kernel_size = kernel_size
110
+ if self.kernel_size is not None:
111
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
112
+
113
+ def forward(self, x):
114
+ for i in range(self.n_blocks):
115
+ x = self.conv[i](x)
116
+ if self.kernel_size is not None:
117
+ return x, self.pool(x)
118
+ else:
119
+ return x
120
+
121
+
122
+ class Intermediate(nn.Module): #
123
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
124
+ super(Intermediate, self).__init__()
125
+ self.n_inters = n_inters
126
+ self.layers = nn.ModuleList()
127
+ self.layers.append(
128
+ ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
129
+ )
130
+ for i in range(self.n_inters - 1):
131
+ self.layers.append(
132
+ ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
133
+ )
134
+
135
+ def forward(self, x):
136
+ for i in range(self.n_inters):
137
+ x = self.layers[i](x)
138
+ return x
139
+
140
+
141
+ class ResDecoderBlock(nn.Module):
142
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
143
+ super(ResDecoderBlock, self).__init__()
144
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
145
+ self.n_blocks = n_blocks
146
+ self.conv1 = nn.Sequential(
147
+ nn.ConvTranspose2d(
148
+ in_channels=in_channels,
149
+ out_channels=out_channels,
150
+ kernel_size=(3, 3),
151
+ stride=stride,
152
+ padding=(1, 1),
153
+ output_padding=out_padding,
154
+ bias=False,
155
+ ),
156
+ nn.BatchNorm2d(out_channels, momentum=momentum),
157
+ nn.ReLU(),
158
+ )
159
+ self.conv2 = nn.ModuleList()
160
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
161
+ for i in range(n_blocks - 1):
162
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
163
+
164
+ def forward(self, x, concat_tensor):
165
+ x = self.conv1(x)
166
+ x = torch.cat((x, concat_tensor), dim=1)
167
+ for i in range(self.n_blocks):
168
+ x = self.conv2[i](x)
169
+ return x
170
+
171
+
172
+ class Decoder(nn.Module):
173
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
174
+ super(Decoder, self).__init__()
175
+ self.layers = nn.ModuleList()
176
+ self.n_decoders = n_decoders
177
+ for i in range(self.n_decoders):
178
+ out_channels = in_channels // 2
179
+ self.layers.append(
180
+ ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
181
+ )
182
+ in_channels = out_channels
183
+
184
+ def forward(self, x, concat_tensors):
185
+ for i in range(self.n_decoders):
186
+ x = self.layers[i](x, concat_tensors[-1 - i])
187
+ return x
188
+
189
+
190
+ class DeepUnet(nn.Module):
191
+ def __init__(
192
+ self,
193
+ kernel_size,
194
+ n_blocks,
195
+ en_de_layers=5,
196
+ inter_layers=4,
197
+ in_channels=1,
198
+ en_out_channels=16,
199
+ ):
200
+ super(DeepUnet, self).__init__()
201
+ self.encoder = Encoder(
202
+ in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
203
+ )
204
+ self.intermediate = Intermediate(
205
+ self.encoder.out_channel // 2,
206
+ self.encoder.out_channel,
207
+ inter_layers,
208
+ n_blocks,
209
+ )
210
+ self.decoder = Decoder(
211
+ self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
212
+ )
213
+
214
+ def forward(self, x):
215
+ x, concat_tensors = self.encoder(x)
216
+ x = self.intermediate(x)
217
+ x = self.decoder(x, concat_tensors)
218
+ return x
219
+
220
+
221
+ class E2E(nn.Module):
222
+ def __init__(
223
+ self,
224
+ n_blocks,
225
+ n_gru,
226
+ kernel_size,
227
+ en_de_layers=5,
228
+ inter_layers=4,
229
+ in_channels=1,
230
+ en_out_channels=16,
231
+ ):
232
+ super(E2E, self).__init__()
233
+ self.unet = DeepUnet(
234
+ kernel_size,
235
+ n_blocks,
236
+ en_de_layers,
237
+ inter_layers,
238
+ in_channels,
239
+ en_out_channels,
240
+ )
241
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
242
+ if n_gru:
243
+ self.fc = nn.Sequential(
244
+ BiGRU(3 * 128, 256, n_gru),
245
+ nn.Linear(512, 360),
246
+ nn.Dropout(0.25),
247
+ nn.Sigmoid(),
248
+ )
249
+ else:
250
+ self.fc = nn.Sequential(
251
+ nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
252
+ )
253
+
254
+ def forward(self, mel):
255
+ mel = mel.transpose(-1, -2).unsqueeze(1)
256
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
257
+ x = self.fc(x)
258
+ return x
259
+
260
+
261
+ class MelSpectrogram(torch.nn.Module):
262
+ def __init__(
263
+ self,
264
+ is_half,
265
+ n_mel_channels,
266
+ sampling_rate,
267
+ win_length,
268
+ hop_length,
269
+ n_fft=None,
270
+ mel_fmin=0,
271
+ mel_fmax=None,
272
+ clamp=1e-5,
273
+ ):
274
+ super().__init__()
275
+ n_fft = win_length if n_fft is None else n_fft
276
+ self.hann_window = {}
277
+ mel_basis = mel(
278
+ sr=sampling_rate,
279
+ n_fft=n_fft,
280
+ n_mels=n_mel_channels,
281
+ fmin=mel_fmin,
282
+ fmax=mel_fmax,
283
+ htk=True,
284
+ )
285
+ mel_basis = torch.from_numpy(mel_basis).float()
286
+ self.register_buffer("mel_basis", mel_basis)
287
+ self.n_fft = win_length if n_fft is None else n_fft
288
+ self.hop_length = hop_length
289
+ self.win_length = win_length
290
+ self.sampling_rate = sampling_rate
291
+ self.n_mel_channels = n_mel_channels
292
+ self.clamp = clamp
293
+ self.is_half = is_half
294
+
295
+ def forward(self, audio, keyshift=0, speed=1, center=True):
296
+ factor = 2 ** (keyshift / 12)
297
+ n_fft_new = int(np.round(self.n_fft * factor))
298
+ win_length_new = int(np.round(self.win_length * factor))
299
+ hop_length_new = int(np.round(self.hop_length * speed))
300
+ keyshift_key = str(keyshift) + "_" + str(audio.device)
301
+ if keyshift_key not in self.hann_window:
302
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
303
+ audio.device
304
+ )
305
+ fft = torch.stft(
306
+ audio,
307
+ n_fft=n_fft_new,
308
+ hop_length=hop_length_new,
309
+ win_length=win_length_new,
310
+ window=self.hann_window[keyshift_key],
311
+ center=center,
312
+ return_complex=True,
313
+ )
314
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
315
+ if keyshift != 0:
316
+ size = self.n_fft // 2 + 1
317
+ resize = magnitude.size(1)
318
+ if resize < size:
319
+ magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
320
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
321
+ mel_output = torch.matmul(self.mel_basis, magnitude)
322
+ if self.is_half == True:
323
+ mel_output = mel_output.half()
324
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
325
+ return log_mel_spec
326
+
327
+
328
+ class RMVPE:
329
+ def __init__(self, model_path, is_half, device=None):
330
+ self.resample_kernel = {}
331
+ model = E2E(4, 1, (2, 2))
332
+ ckpt = torch.load(model_path, map_location="cpu")
333
+ model.load_state_dict(ckpt)
334
+ model.eval()
335
+ if is_half == True:
336
+ model = model.half()
337
+ self.model = model
338
+ self.resample_kernel = {}
339
+ self.is_half = is_half
340
+ if device is None:
341
+ device = "cuda" if torch.cuda.is_available() else "cpu"
342
+ self.device = device
343
+ self.mel_extractor = MelSpectrogram(
344
+ is_half, 128, 16000, 1024, 160, None, 30, 8000
345
+ ).to(device)
346
+ self.model = self.model.to(device)
347
+ cents_mapping = 20 * np.arange(360) + 1997.3794084376191
348
+ self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
349
+
350
+ def mel2hidden(self, mel):
351
+ with torch.no_grad():
352
+ n_frames = mel.shape[-1]
353
+ mel = F.pad(
354
+ mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
355
+ )
356
+ hidden = self.model(mel)
357
+ return hidden[:, :n_frames]
358
+
359
+ def decode(self, hidden, thred=0.03):
360
+ cents_pred = self.to_local_average_cents(hidden, thred=thred)
361
+ f0 = 10 * (2 ** (cents_pred / 1200))
362
+ f0[f0 == 10] = 0
363
+ # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
364
+ return f0
365
+
366
+ def infer_from_audio(self, audio, thred=0.03):
367
+ audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
368
+ # torch.cuda.synchronize()
369
+ # t0=ttime()
370
+ mel = self.mel_extractor(audio, center=True)
371
+ # torch.cuda.synchronize()
372
+ # t1=ttime()
373
+ hidden = self.mel2hidden(mel)
374
+ # torch.cuda.synchronize()
375
+ # t2=ttime()
376
+ hidden = hidden.squeeze(0).cpu().numpy()
377
+ if self.is_half == True:
378
+ hidden = hidden.astype("float32")
379
+ f0 = self.decode(hidden, thred=thred)
380
+ # torch.cuda.synchronize()
381
+ # t3=ttime()
382
+ # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
383
+ return f0
384
+
385
+ def to_local_average_cents(self, salience, thred=0.05):
386
+ # t0 = ttime()
387
+ center = np.argmax(salience, axis=1) # 帧长#index
388
+ salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
389
+ # t1 = ttime()
390
+ center += 4
391
+ todo_salience = []
392
+ todo_cents_mapping = []
393
+ starts = center - 4
394
+ ends = center + 5
395
+ for idx in range(salience.shape[0]):
396
+ todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
397
+ todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
398
+ # t2 = ttime()
399
+ todo_salience = np.array(todo_salience) # 帧长,9
400
+ todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
401
+ product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
402
+ weight_sum = np.sum(todo_salience, 1) # 帧长
403
+ devided = product_sum / weight_sum # 帧长
404
+ # t3 = ttime()
405
+ maxx = np.max(salience, axis=1) # 帧长
406
+ devided[maxx <= thred] = 0
407
+ # t4 = ttime()
408
+ # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
409
+ return devided
src/rvc.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from multiprocessing import cpu_count
2
+ from pathlib import Path
3
+
4
+ import torch
5
+ from fairseq import checkpoint_utils
6
+ from scipy.io import wavfile
7
+
8
+ from src.infer_pack.models import (
9
+ SynthesizerTrnMs256NSFsid,
10
+ SynthesizerTrnMs256NSFsid_nono,
11
+ SynthesizerTrnMs768NSFsid,
12
+ SynthesizerTrnMs768NSFsid_nono,
13
+ )
14
+ from src.my_utils import load_audio
15
+ from src.vc_infer_pipeline import VC
16
+
17
+ BASE_DIR = Path(__file__).resolve().parent.parent
18
+
19
+
20
+ class Config:
21
+ def __init__(self, device, is_half):
22
+ self.device = device
23
+ self.is_half = is_half
24
+ self.n_cpu = 0
25
+ self.gpu_name = None
26
+ self.gpu_mem = None
27
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
28
+
29
+ def device_config(self) -> tuple:
30
+ if torch.cuda.is_available():
31
+ i_device = int(self.device.split(":")[-1])
32
+ self.gpu_name = torch.cuda.get_device_name(i_device)
33
+ if (
34
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
35
+ or "P40" in self.gpu_name.upper()
36
+ or "1060" in self.gpu_name
37
+ or "1070" in self.gpu_name
38
+ or "1080" in self.gpu_name
39
+ ):
40
+ print("16 series/10 series P40 forced single precision")
41
+ self.is_half = False
42
+ for config_file in ["32k.json", "40k.json", "48k.json"]:
43
+ with open(BASE_DIR / "src" / "configs" / config_file, "r") as f:
44
+ strr = f.read().replace("true", "false")
45
+ with open(BASE_DIR / "src" / "configs" / config_file, "w") as f:
46
+ f.write(strr)
47
+ with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
48
+ strr = f.read().replace("3.7", "3.0")
49
+ with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
50
+ f.write(strr)
51
+ else:
52
+ self.gpu_name = None
53
+ self.gpu_mem = int(
54
+ torch.cuda.get_device_properties(i_device).total_memory
55
+ / 1024
56
+ / 1024
57
+ / 1024
58
+ + 0.4
59
+ )
60
+ if self.gpu_mem <= 4:
61
+ with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
62
+ strr = f.read().replace("3.7", "3.0")
63
+ with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
64
+ f.write(strr)
65
+ elif torch.backends.mps.is_available():
66
+ print("No supported N-card found, use MPS for inference")
67
+ self.device = "mps"
68
+ else:
69
+ print("No supported N-card found, use CPU for inference")
70
+ self.device = "cpu"
71
+ self.is_half = True
72
+
73
+ if self.n_cpu == 0:
74
+ self.n_cpu = cpu_count()
75
+
76
+ if self.is_half:
77
+ # 6G memory config
78
+ x_pad = 3
79
+ x_query = 10
80
+ x_center = 60
81
+ x_max = 65
82
+ else:
83
+ # 5G memory config
84
+ x_pad = 1
85
+ x_query = 6
86
+ x_center = 38
87
+ x_max = 41
88
+
89
+ if self.gpu_mem != None and self.gpu_mem <= 4:
90
+ x_pad = 1
91
+ x_query = 5
92
+ x_center = 30
93
+ x_max = 32
94
+
95
+ return x_pad, x_query, x_center, x_max
96
+
97
+
98
+ def load_hubert(device, is_half, model_path):
99
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([model_path], suffix='', )
100
+ hubert = models[0]
101
+ hubert = hubert.to(device)
102
+
103
+ if is_half:
104
+ hubert = hubert.half()
105
+ else:
106
+ hubert = hubert.float()
107
+
108
+ hubert.eval()
109
+ return hubert
110
+
111
+
112
+ def get_vc(device, is_half, config, model_path):
113
+ cpt = torch.load(model_path, map_location='cpu')
114
+ if "config" not in cpt or "weight" not in cpt:
115
+ raise ValueError(f'Incorrect format for {model_path}. Use a voice model trained using RVC v2 instead.')
116
+
117
+ tgt_sr = cpt["config"][-1]
118
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
119
+ if_f0 = cpt.get("f0", 1)
120
+ version = cpt.get("version", "v1")
121
+
122
+ if version == "v1":
123
+ if if_f0 == 1:
124
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
125
+ else:
126
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
127
+ elif version == "v2":
128
+ if if_f0 == 1:
129
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
130
+ else:
131
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
132
+
133
+ del net_g.enc_q
134
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
135
+ net_g.eval().to(device)
136
+
137
+ if is_half:
138
+ net_g = net_g.half()
139
+ else:
140
+ net_g = net_g.float()
141
+
142
+ vc = VC(tgt_sr, config)
143
+ return cpt, version, net_g, tgt_sr, vc
144
+
145
+
146
+ def rvc_infer(index_path, index_rate, input_path, output_path, pitch_change, f0_method, cpt, version, net_g, filter_radius, tgt_sr, rms_mix_rate, protect, crepe_hop_length, vc, hubert_model):
147
+ audio = load_audio(input_path, 16000)
148
+ times = [0, 0, 0]
149
+ if_f0 = cpt.get('f0', 1)
150
+ audio_opt = vc.pipeline(hubert_model, net_g, 0, audio, input_path, times, pitch_change, f0_method, index_path, index_rate, if_f0, filter_radius, tgt_sr, 0, rms_mix_rate, version, protect, crepe_hop_length)
151
+ wavfile.write(output_path, tgt_sr, audio_opt)
src/trainset_preprocess_pipeline_print.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys, os, multiprocessing
2
+ from scipy import signal
3
+
4
+ now_dir = os.getcwd()
5
+ sys.path.append(now_dir)
6
+
7
+ inp_root = sys.argv[1]
8
+ sr = int(sys.argv[2])
9
+ n_p = int(sys.argv[3])
10
+ exp_dir = sys.argv[4]
11
+ noparallel = sys.argv[5] == "True"
12
+ import numpy as np, os, traceback
13
+ from slicer2 import Slicer
14
+ import librosa, traceback
15
+ from scipy.io import wavfile
16
+ import multiprocessing
17
+ from my_utils import load_audio
18
+ import tqdm
19
+
20
+ DoFormant = False
21
+ Quefrency = 1.0
22
+ Timbre = 1.0
23
+
24
+ mutex = multiprocessing.Lock()
25
+ f = open("%s/preprocess.log" % exp_dir, "a+")
26
+
27
+
28
+ def println(strr):
29
+ mutex.acquire()
30
+ print(strr)
31
+ f.write("%s\n" % strr)
32
+ f.flush()
33
+ mutex.release()
34
+
35
+
36
+ class PreProcess:
37
+ def __init__(self, sr, exp_dir):
38
+ self.slicer = Slicer(
39
+ sr=sr,
40
+ threshold=-42,
41
+ min_length=1500,
42
+ min_interval=400,
43
+ hop_size=15,
44
+ max_sil_kept=500,
45
+ )
46
+ self.sr = sr
47
+ self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
48
+ self.per = 3.0
49
+ self.overlap = 0.3
50
+ self.tail = self.per + self.overlap
51
+ self.max = 0.9
52
+ self.alpha = 0.75
53
+ self.exp_dir = exp_dir
54
+ self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
55
+ self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
56
+ os.makedirs(self.exp_dir, exist_ok=True)
57
+ os.makedirs(self.gt_wavs_dir, exist_ok=True)
58
+ os.makedirs(self.wavs16k_dir, exist_ok=True)
59
+
60
+ def norm_write(self, tmp_audio, idx0, idx1):
61
+ tmp_max = np.abs(tmp_audio).max()
62
+ if tmp_max > 2.5:
63
+ print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
64
+ return
65
+ tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + (
66
+ 1 - self.alpha
67
+ ) * tmp_audio
68
+ wavfile.write(
69
+ "%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
70
+ self.sr,
71
+ tmp_audio.astype(np.float32),
72
+ )
73
+ tmp_audio = librosa.resample(
74
+ tmp_audio, orig_sr=self.sr, target_sr=16000
75
+ ) # , res_type="soxr_vhq"
76
+ wavfile.write(
77
+ "%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
78
+ 16000,
79
+ tmp_audio.astype(np.float32),
80
+ )
81
+
82
+ def pipeline(self, path, idx0):
83
+ try:
84
+ audio = load_audio(path, self.sr, DoFormant, Quefrency, Timbre)
85
+ # zero phased digital filter cause pre-ringing noise...
86
+ # audio = signal.filtfilt(self.bh, self.ah, audio)
87
+ audio = signal.lfilter(self.bh, self.ah, audio)
88
+
89
+ idx1 = 0
90
+ for audio in self.slicer.slice(audio):
91
+ i = 0
92
+ while 1:
93
+ start = int(self.sr * (self.per - self.overlap) * i)
94
+ i += 1
95
+ if len(audio[start:]) > self.tail * self.sr:
96
+ tmp_audio = audio[start : start + int(self.per * self.sr)]
97
+ self.norm_write(tmp_audio, idx0, idx1)
98
+ idx1 += 1
99
+ else:
100
+ tmp_audio = audio[start:]
101
+ idx1 += 1
102
+ break
103
+ self.norm_write(tmp_audio, idx0, idx1)
104
+ # println("%s->Suc." % path)
105
+ except:
106
+ println("%s->%s" % (path, traceback.format_exc()))
107
+
108
+ def pipeline_mp(self, infos, thread_n):
109
+ for path, idx0 in tqdm.tqdm(
110
+ infos, position=thread_n, leave=True, desc="thread:%s" % thread_n
111
+ ):
112
+ self.pipeline(path, idx0)
113
+
114
+ def pipeline_mp_inp_dir(self, inp_root, n_p):
115
+ try:
116
+ infos = [
117
+ ("%s/%s" % (inp_root, name), idx)
118
+ for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
119
+ ]
120
+ if noparallel:
121
+ for i in range(n_p):
122
+ self.pipeline_mp(infos[i::n_p])
123
+ else:
124
+ ps = []
125
+ for i in range(n_p):
126
+ p = multiprocessing.Process(
127
+ target=self.pipeline_mp, args=(infos[i::n_p], i)
128
+ )
129
+ ps.append(p)
130
+ p.start()
131
+ for i in range(n_p):
132
+ ps[i].join()
133
+ except:
134
+ println("Fail. %s" % traceback.format_exc())
135
+
136
+
137
+ def preprocess_trainset(inp_root, sr, n_p, exp_dir):
138
+ pp = PreProcess(sr, exp_dir)
139
+ println("start preprocess")
140
+ println(sys.argv)
141
+ pp.pipeline_mp_inp_dir(inp_root, n_p)
142
+ println("end preprocess")
143
+
144
+
145
+ if __name__ == "__main__":
146
+ preprocess_trainset(inp_root, sr, n_p, exp_dir)
src/vc_infer_pipeline.py ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from time import time as ttime
3
+
4
+ import faiss
5
+ import librosa
6
+ import numpy as np
7
+ import os
8
+ import parselmouth
9
+ import pyworld
10
+ import sys
11
+ import torch
12
+ import torch.nn.functional as F
13
+ import torchcrepe
14
+ import traceback
15
+ from scipy import signal
16
+ from torch import Tensor
17
+
18
+ BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
19
+ now_dir = os.path.join(BASE_DIR, 'src')
20
+ sys.path.append(now_dir)
21
+
22
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
23
+
24
+ input_audio_path2wav = {}
25
+
26
+
27
+ @lru_cache
28
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
29
+ audio = input_audio_path2wav[input_audio_path]
30
+ f0, t = pyworld.harvest(
31
+ audio,
32
+ fs=fs,
33
+ f0_ceil=f0max,
34
+ f0_floor=f0min,
35
+ frame_period=frame_period,
36
+ )
37
+ f0 = pyworld.stonemask(audio, f0, t, fs)
38
+ return f0
39
+
40
+
41
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
42
+ # print(data1.max(),data2.max())
43
+ rms1 = librosa.feature.rms(
44
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
45
+ ) # 每半秒一个点
46
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
47
+ rms1 = torch.from_numpy(rms1)
48
+ rms1 = F.interpolate(
49
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
50
+ ).squeeze()
51
+ rms2 = torch.from_numpy(rms2)
52
+ rms2 = F.interpolate(
53
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
54
+ ).squeeze()
55
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
56
+ data2 *= (
57
+ torch.pow(rms1, torch.tensor(1 - rate))
58
+ * torch.pow(rms2, torch.tensor(rate - 1))
59
+ ).numpy()
60
+ return data2
61
+
62
+
63
+ class VC(object):
64
+ def __init__(self, tgt_sr, config):
65
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
66
+ config.x_pad,
67
+ config.x_query,
68
+ config.x_center,
69
+ config.x_max,
70
+ config.is_half,
71
+ )
72
+ self.sr = 16000 # hubert输入采样率
73
+ self.window = 160 # 每帧点数
74
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
75
+ self.t_pad_tgt = tgt_sr * self.x_pad
76
+ self.t_pad2 = self.t_pad * 2
77
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
78
+ self.t_center = self.sr * self.x_center # 查询切点位置
79
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
80
+ self.device = config.device
81
+
82
+ # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
83
+ def get_optimal_torch_device(self, index: int = 0) -> torch.device:
84
+ # Get cuda device
85
+ if torch.cuda.is_available():
86
+ return torch.device(
87
+ f"cuda:{index % torch.cuda.device_count()}"
88
+ ) # Very fast
89
+ elif torch.backends.mps.is_available():
90
+ return torch.device("mps")
91
+ # Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
92
+ # Else wise return the "cpu" as a torch device,
93
+ return torch.device("cpu")
94
+
95
+ # Fork Feature: Compute f0 with the crepe method
96
+ def get_f0_crepe_computation(
97
+ self,
98
+ x,
99
+ f0_min,
100
+ f0_max,
101
+ p_len,
102
+ hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
103
+ model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
104
+ ):
105
+ x = x.astype(
106
+ np.float32
107
+ ) # fixes the F.conv2D exception. We needed to convert double to float.
108
+ x /= np.quantile(np.abs(x), 0.999)
109
+ torch_device = self.get_optimal_torch_device()
110
+ audio = torch.from_numpy(x).to(torch_device, copy=True)
111
+ audio = torch.unsqueeze(audio, dim=0)
112
+ if audio.ndim == 2 and audio.shape[0] > 1:
113
+ audio = torch.mean(audio, dim=0, keepdim=True).detach()
114
+ audio = audio.detach()
115
+ print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
116
+ pitch: Tensor = torchcrepe.predict(
117
+ audio,
118
+ self.sr,
119
+ hop_length,
120
+ f0_min,
121
+ f0_max,
122
+ model,
123
+ batch_size=hop_length * 2,
124
+ device=torch_device,
125
+ pad=True,
126
+ )
127
+ p_len = p_len or x.shape[0] // hop_length
128
+ # Resize the pitch for final f0
129
+ source = np.array(pitch.squeeze(0).cpu().float().numpy())
130
+ source[source < 0.001] = np.nan
131
+ target = np.interp(
132
+ np.arange(0, len(source) * p_len, len(source)) / p_len,
133
+ np.arange(0, len(source)),
134
+ source,
135
+ )
136
+ f0 = np.nan_to_num(target)
137
+ return f0 # Resized f0
138
+
139
+ def get_f0_official_crepe_computation(
140
+ self,
141
+ x,
142
+ f0_min,
143
+ f0_max,
144
+ model="full",
145
+ ):
146
+ # Pick a batch size that doesn't cause memory errors on your gpu
147
+ batch_size = 512
148
+ # Compute pitch using first gpu
149
+ audio = torch.tensor(np.copy(x))[None].float()
150
+ f0, pd = torchcrepe.predict(
151
+ audio,
152
+ self.sr,
153
+ self.window,
154
+ f0_min,
155
+ f0_max,
156
+ model,
157
+ batch_size=batch_size,
158
+ device=self.device,
159
+ return_periodicity=True,
160
+ )
161
+ pd = torchcrepe.filter.median(pd, 3)
162
+ f0 = torchcrepe.filter.mean(f0, 3)
163
+ f0[pd < 0.1] = 0
164
+ f0 = f0[0].cpu().numpy()
165
+ return f0
166
+
167
+ # Fork Feature: Compute pYIN f0 method
168
+ def get_f0_pyin_computation(self, x, f0_min, f0_max):
169
+ y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
170
+ f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
171
+ f0 = f0[1:] # Get rid of extra first frame
172
+ return f0
173
+
174
+ # Fork Feature: Acquire median hybrid f0 estimation calculation
175
+ def get_f0_hybrid_computation(
176
+ self,
177
+ methods_str,
178
+ input_audio_path,
179
+ x,
180
+ f0_min,
181
+ f0_max,
182
+ p_len,
183
+ filter_radius,
184
+ crepe_hop_length,
185
+ time_step,
186
+ ):
187
+ # Get various f0 methods from input to use in the computation stack
188
+ s = methods_str
189
+ s = s.split("hybrid")[1]
190
+ s = s.replace("[", "").replace("]", "")
191
+ methods = s.split("+")
192
+ f0_computation_stack = []
193
+
194
+ print("Calculating f0 pitch estimations for methods: %s" % str(methods))
195
+ x = x.astype(np.float32)
196
+ x /= np.quantile(np.abs(x), 0.999)
197
+ # Get f0 calculations for all methods specified
198
+ for method in methods:
199
+ f0 = None
200
+ if method == "pm":
201
+ f0 = (
202
+ parselmouth.Sound(x, self.sr)
203
+ .to_pitch_ac(
204
+ time_step=time_step / 1000,
205
+ voicing_threshold=0.6,
206
+ pitch_floor=f0_min,
207
+ pitch_ceiling=f0_max,
208
+ )
209
+ .selected_array["frequency"]
210
+ )
211
+ pad_size = (p_len - len(f0) + 1) // 2
212
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
213
+ f0 = np.pad(
214
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
215
+ )
216
+ elif method == "crepe":
217
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
218
+ f0 = f0[1:] # Get rid of extra first frame
219
+ elif method == "crepe-tiny":
220
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
221
+ f0 = f0[1:] # Get rid of extra first frame
222
+ elif method == "mangio-crepe":
223
+ f0 = self.get_f0_crepe_computation(
224
+ x, f0_min, f0_max, p_len, crepe_hop_length
225
+ )
226
+ elif method == "mangio-crepe-tiny":
227
+ f0 = self.get_f0_crepe_computation(
228
+ x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
229
+ )
230
+ elif method == "harvest":
231
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
232
+ if filter_radius > 2:
233
+ f0 = signal.medfilt(f0, 3)
234
+ f0 = f0[1:] # Get rid of first frame.
235
+ elif method == "dio": # Potentially buggy?
236
+ f0, t = pyworld.dio(
237
+ x.astype(np.double),
238
+ fs=self.sr,
239
+ f0_ceil=f0_max,
240
+ f0_floor=f0_min,
241
+ frame_period=10,
242
+ )
243
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
244
+ f0 = signal.medfilt(f0, 3)
245
+ f0 = f0[1:]
246
+ # elif method == "pyin": Not Working just yet
247
+ # f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
248
+ # Push method to the stack
249
+ f0_computation_stack.append(f0)
250
+
251
+ for fc in f0_computation_stack:
252
+ print(len(fc))
253
+
254
+ print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
255
+ f0_median_hybrid = None
256
+ if len(f0_computation_stack) == 1:
257
+ f0_median_hybrid = f0_computation_stack[0]
258
+ else:
259
+ f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
260
+ return f0_median_hybrid
261
+
262
+ def get_f0(
263
+ self,
264
+ input_audio_path,
265
+ x,
266
+ p_len,
267
+ f0_up_key,
268
+ f0_method,
269
+ filter_radius,
270
+ crepe_hop_length,
271
+ inp_f0=None,
272
+ ):
273
+ global input_audio_path2wav
274
+ time_step = self.window / self.sr * 1000
275
+ f0_min = 50
276
+ f0_max = 1100
277
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
278
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
279
+ if f0_method == "pm":
280
+ f0 = (
281
+ parselmouth.Sound(x, self.sr)
282
+ .to_pitch_ac(
283
+ time_step=time_step / 1000,
284
+ voicing_threshold=0.6,
285
+ pitch_floor=f0_min,
286
+ pitch_ceiling=f0_max,
287
+ )
288
+ .selected_array["frequency"]
289
+ )
290
+ pad_size = (p_len - len(f0) + 1) // 2
291
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
292
+ f0 = np.pad(
293
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
294
+ )
295
+ elif f0_method == "harvest":
296
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
297
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
298
+ if filter_radius > 2:
299
+ f0 = signal.medfilt(f0, 3)
300
+ elif f0_method == "dio": # Potentially Buggy?
301
+ f0, t = pyworld.dio(
302
+ x.astype(np.double),
303
+ fs=self.sr,
304
+ f0_ceil=f0_max,
305
+ f0_floor=f0_min,
306
+ frame_period=10,
307
+ )
308
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
309
+ f0 = signal.medfilt(f0, 3)
310
+ elif f0_method == "crepe":
311
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
312
+ elif f0_method == "crepe-tiny":
313
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
314
+ elif f0_method == "mangio-crepe":
315
+ f0 = self.get_f0_crepe_computation(
316
+ x, f0_min, f0_max, p_len, crepe_hop_length
317
+ )
318
+ elif f0_method == "mangio-crepe-tiny":
319
+ f0 = self.get_f0_crepe_computation(
320
+ x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
321
+ )
322
+ elif f0_method == "rmvpe":
323
+ if hasattr(self, "model_rmvpe") == False:
324
+ from rmvpe import RMVPE
325
+
326
+ self.model_rmvpe = RMVPE(
327
+ os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'), is_half=self.is_half, device=self.device
328
+ )
329
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
330
+
331
+ elif "hybrid" in f0_method:
332
+ # Perform hybrid median pitch estimation
333
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
334
+ f0 = self.get_f0_hybrid_computation(
335
+ f0_method,
336
+ input_audio_path,
337
+ x,
338
+ f0_min,
339
+ f0_max,
340
+ p_len,
341
+ filter_radius,
342
+ crepe_hop_length,
343
+ time_step,
344
+ )
345
+
346
+ f0 *= pow(2, f0_up_key / 12)
347
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
348
+ tf0 = self.sr // self.window # 每秒f0点数
349
+ if inp_f0 is not None:
350
+ delta_t = np.round(
351
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
352
+ ).astype("int16")
353
+ replace_f0 = np.interp(
354
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
355
+ )
356
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
357
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
358
+ :shape
359
+ ]
360
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
361
+ f0bak = f0.copy()
362
+ f0_mel = 1127 * np.log(1 + f0 / 700)
363
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
364
+ f0_mel_max - f0_mel_min
365
+ ) + 1
366
+ f0_mel[f0_mel <= 1] = 1
367
+ f0_mel[f0_mel > 255] = 255
368
+ f0_coarse = np.rint(f0_mel).astype(np.int_)
369
+
370
+ return f0_coarse, f0bak # 1-0
371
+
372
+ def vc(
373
+ self,
374
+ model,
375
+ net_g,
376
+ sid,
377
+ audio0,
378
+ pitch,
379
+ pitchf,
380
+ times,
381
+ index,
382
+ big_npy,
383
+ index_rate,
384
+ version,
385
+ protect,
386
+ ): # ,file_index,file_big_npy
387
+ feats = torch.from_numpy(audio0)
388
+ if self.is_half:
389
+ feats = feats.half()
390
+ else:
391
+ feats = feats.float()
392
+ if feats.dim() == 2: # double channels
393
+ feats = feats.mean(-1)
394
+ assert feats.dim() == 1, feats.dim()
395
+ feats = feats.view(1, -1)
396
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
397
+
398
+ inputs = {
399
+ "source": feats.to(self.device),
400
+ "padding_mask": padding_mask,
401
+ "output_layer": 9 if version == "v1" else 12,
402
+ }
403
+ t0 = ttime()
404
+ with torch.no_grad():
405
+ logits = model.extract_features(**inputs)
406
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
407
+ if protect < 0.5 and pitch != None and pitchf != None:
408
+ feats0 = feats.clone()
409
+ if (
410
+ isinstance(index, type(None)) == False
411
+ and isinstance(big_npy, type(None)) == False
412
+ and index_rate != 0
413
+ ):
414
+ npy = feats[0].cpu().numpy()
415
+ if self.is_half:
416
+ npy = npy.astype("float32")
417
+
418
+ # _, I = index.search(npy, 1)
419
+ # npy = big_npy[I.squeeze()]
420
+
421
+ score, ix = index.search(npy, k=8)
422
+ weight = np.square(1 / score)
423
+ weight /= weight.sum(axis=1, keepdims=True)
424
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
425
+
426
+ if self.is_half:
427
+ npy = npy.astype("float16")
428
+ feats = (
429
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
430
+ + (1 - index_rate) * feats
431
+ )
432
+
433
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
434
+ if protect < 0.5 and pitch != None and pitchf != None:
435
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
436
+ 0, 2, 1
437
+ )
438
+ t1 = ttime()
439
+ p_len = audio0.shape[0] // self.window
440
+ if feats.shape[1] < p_len:
441
+ p_len = feats.shape[1]
442
+ if pitch != None and pitchf != None:
443
+ pitch = pitch[:, :p_len]
444
+ pitchf = pitchf[:, :p_len]
445
+
446
+ if protect < 0.5 and pitch != None and pitchf != None:
447
+ pitchff = pitchf.clone()
448
+ pitchff[pitchf > 0] = 1
449
+ pitchff[pitchf < 1] = protect
450
+ pitchff = pitchff.unsqueeze(-1)
451
+ feats = feats * pitchff + feats0 * (1 - pitchff)
452
+ feats = feats.to(feats0.dtype)
453
+ p_len = torch.tensor([p_len], device=self.device).long()
454
+ with torch.no_grad():
455
+ if pitch != None and pitchf != None:
456
+ audio1 = (
457
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
458
+ .data.cpu()
459
+ .float()
460
+ .numpy()
461
+ )
462
+ else:
463
+ audio1 = (
464
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
465
+ )
466
+ del feats, p_len, padding_mask
467
+ if torch.cuda.is_available():
468
+ torch.cuda.empty_cache()
469
+ t2 = ttime()
470
+ times[0] += t1 - t0
471
+ times[2] += t2 - t1
472
+ return audio1
473
+
474
+ def pipeline(
475
+ self,
476
+ model,
477
+ net_g,
478
+ sid,
479
+ audio,
480
+ input_audio_path,
481
+ times,
482
+ f0_up_key,
483
+ f0_method,
484
+ file_index,
485
+ # file_big_npy,
486
+ index_rate,
487
+ if_f0,
488
+ filter_radius,
489
+ tgt_sr,
490
+ resample_sr,
491
+ rms_mix_rate,
492
+ version,
493
+ protect,
494
+ crepe_hop_length,
495
+ f0_file=None,
496
+ ):
497
+ if (
498
+ file_index != ""
499
+ # and file_big_npy != ""
500
+ # and os.path.exists(file_big_npy) == True
501
+ and os.path.exists(file_index) == True
502
+ and index_rate != 0
503
+ ):
504
+ try:
505
+ index = faiss.read_index(file_index)
506
+ # big_npy = np.load(file_big_npy)
507
+ big_npy = index.reconstruct_n(0, index.ntotal)
508
+ except:
509
+ traceback.print_exc()
510
+ index = big_npy = None
511
+ else:
512
+ index = big_npy = None
513
+ audio = signal.filtfilt(bh, ah, audio)
514
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
515
+ opt_ts = []
516
+ if audio_pad.shape[0] > self.t_max:
517
+ audio_sum = np.zeros_like(audio)
518
+ for i in range(self.window):
519
+ audio_sum += audio_pad[i : i - self.window]
520
+ for t in range(self.t_center, audio.shape[0], self.t_center):
521
+ opt_ts.append(
522
+ t
523
+ - self.t_query
524
+ + np.where(
525
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
526
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
527
+ )[0][0]
528
+ )
529
+ s = 0
530
+ audio_opt = []
531
+ t = None
532
+ t1 = ttime()
533
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
534
+ p_len = audio_pad.shape[0] // self.window
535
+ inp_f0 = None
536
+ if hasattr(f0_file, "name") == True:
537
+ try:
538
+ with open(f0_file.name, "r") as f:
539
+ lines = f.read().strip("\n").split("\n")
540
+ inp_f0 = []
541
+ for line in lines:
542
+ inp_f0.append([float(i) for i in line.split(",")])
543
+ inp_f0 = np.array(inp_f0, dtype="float32")
544
+ except:
545
+ traceback.print_exc()
546
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
547
+ pitch, pitchf = None, None
548
+ if if_f0 == 1:
549
+ pitch, pitchf = self.get_f0(
550
+ input_audio_path,
551
+ audio_pad,
552
+ p_len,
553
+ f0_up_key,
554
+ f0_method,
555
+ filter_radius,
556
+ crepe_hop_length,
557
+ inp_f0,
558
+ )
559
+ pitch = pitch[:p_len]
560
+ pitchf = pitchf[:p_len]
561
+ if self.device == "mps":
562
+ pitchf = pitchf.astype(np.float32)
563
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
564
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
565
+ t2 = ttime()
566
+ times[1] += t2 - t1
567
+ for t in opt_ts:
568
+ t = t // self.window * self.window
569
+ if if_f0 == 1:
570
+ audio_opt.append(
571
+ self.vc(
572
+ model,
573
+ net_g,
574
+ sid,
575
+ audio_pad[s : t + self.t_pad2 + self.window],
576
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
577
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
578
+ times,
579
+ index,
580
+ big_npy,
581
+ index_rate,
582
+ version,
583
+ protect,
584
+ )[self.t_pad_tgt : -self.t_pad_tgt]
585
+ )
586
+ else:
587
+ audio_opt.append(
588
+ self.vc(
589
+ model,
590
+ net_g,
591
+ sid,
592
+ audio_pad[s : t + self.t_pad2 + self.window],
593
+ None,
594
+ None,
595
+ times,
596
+ index,
597
+ big_npy,
598
+ index_rate,
599
+ version,
600
+ protect,
601
+ )[self.t_pad_tgt : -self.t_pad_tgt]
602
+ )
603
+ s = t
604
+ if if_f0 == 1:
605
+ audio_opt.append(
606
+ self.vc(
607
+ model,
608
+ net_g,
609
+ sid,
610
+ audio_pad[t:],
611
+ pitch[:, t // self.window :] if t is not None else pitch,
612
+ pitchf[:, t // self.window :] if t is not None else pitchf,
613
+ times,
614
+ index,
615
+ big_npy,
616
+ index_rate,
617
+ version,
618
+ protect,
619
+ )[self.t_pad_tgt : -self.t_pad_tgt]
620
+ )
621
+ else:
622
+ audio_opt.append(
623
+ self.vc(
624
+ model,
625
+ net_g,
626
+ sid,
627
+ audio_pad[t:],
628
+ None,
629
+ None,
630
+ times,
631
+ index,
632
+ big_npy,
633
+ index_rate,
634
+ version,
635
+ protect,
636
+ )[self.t_pad_tgt : -self.t_pad_tgt]
637
+ )
638
+ audio_opt = np.concatenate(audio_opt)
639
+ if rms_mix_rate != 1:
640
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
641
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
642
+ audio_opt = librosa.resample(
643
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
644
+ )
645
+ audio_max = np.abs(audio_opt).max() / 0.99
646
+ max_int16 = 32768
647
+ if audio_max > 1:
648
+ max_int16 /= audio_max
649
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
650
+ del pitch, pitchf, sid
651
+ if torch.cuda.is_available():
652
+ torch.cuda.empty_cache()
653
+ return audio_opt