Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from PIL import Image | |
import numpy as np | |
from aura_sr import AuraSR | |
import torch | |
import time | |
import spaces | |
# Force CPU usage | |
torch.set_default_tensor_type(torch.FloatTensor) | |
# Override torch.load to always use CPU | |
original_load = torch.load | |
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) | |
# Initialize the AuraSR model | |
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") | |
# Restore original torch.load | |
torch.load = original_load | |
def process_image(input_image, scale_factor): | |
if input_image is None: | |
raise gr.Error("Please provide an image to upscale.") | |
start_time = time.time() | |
# Convert to PIL Image for resizing | |
pil_image = Image.fromarray(input_image) | |
if scale_factor == 2: | |
pil_image = pil_image.resize((int(pil_image.width * 0.5), int(pil_image.height * 0.5)), Image.LANCZOS) | |
elif scale_factor == 3: | |
pil_image = pil_image.resize((int(pil_image.width * 0.75), int(pil_image.height * 0.75)), Image.LANCZOS) | |
# Upscale the image using AuraSR | |
upscaled_image = process_image_on_gpu(pil_image) | |
# Convert result to numpy array if it's not already | |
result_array = np.array(upscaled_image) | |
end_time = time.time() | |
processing_time = end_time - start_time | |
return [input_image, result_array], f"Processing time: {processing_time:.2f} seconds" | |
def process_image_on_gpu(pil_image): | |
try: | |
return aura_sr.upscale_4x(pil_image) | |
except Exception as e: | |
raise gr.Error(f"An error occurred during image upscaling: {str(e)}") | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Upscaler") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
scale_factor = gr.Radio([2, 3, 4], label="Scale Factor", value=4) | |
with gr.Row(): | |
image_slider = ImageSlider(label="Before/After") | |
upscale_button = gr.Button("Upscale") | |
processing_time_text = gr.Textbox(label="Processing Time") | |
upscale_button.click(fn=process_image, inputs=[input_image, scale_factor], outputs=[image_slider, processing_time_text]) | |
demo.launch() | |