File size: 9,470 Bytes
c70d81d
 
 
 
 
 
 
 
b2fc243
c70d81d
 
 
 
 
 
9d8380b
 
e502065
 
 
 
 
 
 
 
c70d81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea370c7
40a56d1
c70d81d
b72617b
e502065
 
 
 
 
 
240e2c3
40a56d1
 
240e2c3
 
 
c70d81d
 
ea370c7
c70d81d
 
ea370c7
b72617b
 
 
 
c70d81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b72617b
c70d81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b72617b
c70d81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f7d64
c70d81d
9d8380b
 
a80039f
c70d81d
 
 
 
 
 
 
 
 
 
 
 
 
b72617b
c70d81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import yt_dlp
from dotenv import load_dotenv
import os
import google.generativeai as genai
import re
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import time
import spaces

load_dotenv()
default_gemini_api_key = os.getenv('gemini_api_key')

device = 0 if torch.cuda.is_available() else "cpu"

def load_pipeline(model_name):
    return pipeline(
        task="automatic-speech-recognition",
        model=model_name,
        chunk_length_s=30,
        device=device,
    )

def configure_genai(api_key, model_variant):
    genai.configure(api_key=api_key)
    return genai.GenerativeModel(model_variant)

def extract_youtube_id(youtube_url):
    # Extract the YouTube video ID from various URL formats
    youtube_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
    if youtube_id_match:
        return youtube_id_match.group(1)
    return None

def download_youtube_audio(youtube_url, output_filename):
    ydl_opts = {
        'format': 'bestaudio/best',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
        'outtmpl': output_filename,
    }
    
    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([youtube_url])
        
        print(f"Downloaded audio from YouTube URL: {youtube_url}")
        return output_filename
    except Exception as e:
        print(f"Error downloading YouTube audio: {str(e)}")
        raise gr.Error(f"Failed to download YouTube audio: {str(e)}")

def summarize_transcription(transcription, model, gemini_prompt):
    try:
        prompt = f"{gemini_prompt}:\n\n{transcription}"
        response = model.generate_content(prompt)
        return response.text
    except Exception as e:
        print(f"Error summarizing transcription: {str(e)}")
        return f"Error summarizing transcription: {str(e)}"
    
@spaces.GPU(duration=180)
def process_audio(audio_file, language, whisper_model):
    print("Starting transcription...")
    start_time = time.time()

    if device == 0:
        pipe = load_pipeline(whisper_model)
    else:
        pipe = load_pipeline("openai/whisper-tiny")

    with open(audio_file, "rb") as f:
        inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    if language:
        print(f"Using language: {language}")
        transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe", "language": language}, return_timestamps=True)["text"]
    else:
        print("No language defined, using default language")
        transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
    
    end_time = time.time()
    processing_time = round(end_time - start_time, 2)
    return transcription, processing_time

def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_prompt, gemini_model_variant, language, progress=gr.Progress()):
    try:
        progress(0, desc="Initializing")
        if not gemini_api_key:
            gemini_api_key = default_gemini_api_key
        model = configure_genai(gemini_api_key, gemini_model_variant)

        if youtube_url:
            progress(0.1, desc="Extracting YouTube ID")
            youtube_id = extract_youtube_id(youtube_url)
            if youtube_id:
                output_filename = f"{youtube_id}"
            else:
                output_filename = f"unknown"
            progress(0.2, desc="Downloading YouTube audio")
            audio_file = download_youtube_audio(youtube_url, output_filename)
            audio_file = f"{audio_file}.mp3"
            print(f"Audio file downloaded: {audio_file}")
        else:
            progress(0.2, desc="Reading audio file")
            audio_file = f"{audio_file.name}"
            print(f"Audio file read: {audio_file}")
        
        progress(0.4, desc="Starting transcription")
        transcription, processing_time = process_audio(audio_file, language, whisper_model)
        
        progress(0.6, desc="Cleaning up")
        # Delete the audio file after transcription
        if os.path.exists(f"{audio_file}.mp3"):
            os.remove(f"{audio_file}.mp3")
            print(f"Deleted audio file: {audio_file}.mp3")
        
        progress(0.7, desc="Summarizing transcription")
        # Summarize the transcription
        summary = summarize_transcription(transcription, model, gemini_prompt)
        
        progress(0.8, desc="Preparing output")
        # Prepare the transcription and summary message
        transcription_message = f"{transcription}" if transcription else ""
        
        summary_message = f"{summary}" if summary else ""
        
        progress(0.9, desc="Saving output to file")
        print("Saving transcription and summary to file...")
        # Save transcription and summary to separate text files
        transcription_file = "transcription_output.txt"
        summary_file = "summary_output.txt"
        with open(transcription_file, "w", encoding="utf-8") as f:
            f.write(transcription_message)
        with open(summary_file, "w", encoding="utf-8") as f:
            f.write(summary_message)
        
        progress(1, desc="Complete")
        print("Transcription and summarization complete.")
        return transcription_message, summary_message, transcription_file, summary_file, processing_time
    except gr.Error as e:
        # Re-raise Gradio errors
        raise e
    except Exception as e:
        print(f"Error during transcription or summarization: {str(e)}")
        raise gr.Error(f"Transcription or summarization failed: {str(e)}")

def toggle_input(choice):
        if choice == "YouTube URL":
            return gr.update(visible=True), gr.update(visible=False, value=None)
        else:
            return gr.update(visible=False, value=None), gr.update(visible=True)
        
def toggle_language(choice):
    if choice == True:
        return gr.update(visible=True, value="id")
    else:
        return gr.update(visible=False, value="")

with gr.Blocks(theme='NoCrypt/miku') as demo:
    gr.Label('Youtube Summarizer WebUI created with ❤️ by Ryusui', show_label=False)
    
    with gr.Accordion("Input"):
        with gr.Column():
            input_type = gr.Radio(["YouTube URL", "Audio File"], label="Input Type", value="Audio File", info="Please consider using the audio file if you face any issues with the YouTube URL. Currently youtube is banning HuggingFace IP Addresses.", interactive=False)
            with gr.Row():
                youtube_url = gr.Textbox(label="YouTube URL", visible=False, info="Input the full URL of the YouTube video you want to transcribe and summarize. Example: https://www.youtube.com/watch?v=VIDEO_ID")
                audio_file = gr.File(label="Upload Audio File", visible=True, file_types=['.wav', '.flac', '.mp3'])
                whisper_model = gr.Dropdown(["openai/whisper-tiny", "openai/whisper-base", "openai/whisper-small", "openai/whisper-medium", "openai/whisper-large-v3"], label="Whisper Model", value="openai/whisper-large-v3", info="Tiny is the fastest model, but it's not the best quality. large-v3 is the best quality, but it's the slowest model.")
                gemini_model_variant = gr.Dropdown(["gemini-1.5-flash", "gemini-1.5-pro"], label="Gemini Model Variant", value="gemini-1.5-pro", info="Gemini-1.5-flash is the fastest model, but it's not the best quality. Gemini-1.5-pro is the best quality, but it's slower")
            define_language = gr.Checkbox(label="Define Language", value=False, info="If you want to define the language, check this box")
            language = gr.Dropdown(["id","en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"], label="Language", value=None, info="Select the language for transcription", visible=False)
            gemini_api_key = gr.Textbox(label="Gemini API Key (Optional)", placeholder="Enter your Gemini API key or leave blank to use default", info="If you facing error on transcription, please try to use your own API key")
            gemini_prompt = gr.Textbox(label="Gemini Prompt", value="Buatkan resume dari transkrip ini")
            transcribe_button = gr.Button("Transcribe and Summarize")

    with gr.Accordion("Output"):
        with gr.Column():
            transcription_output = gr.Textbox(label="Transcription Output")
            summary_output = gr.Textbox(label="Summary Output")
        transcription_file = gr.File(label="Download Transcription")
        summary_file = gr.File(label="Download Summary")
        processing_time = gr.Textbox(label="Transcription Processing Time (seconds)")
    
    input_type.change(fn=toggle_input, inputs=input_type, outputs=[youtube_url, audio_file])
    define_language.change(fn=toggle_language, inputs=define_language, outputs=[language])

    transcribe_button.click(
        fn=transcribe,
        inputs=[
            youtube_url,
            audio_file,
            whisper_model,
            gemini_api_key,
            gemini_prompt,
            gemini_model_variant,
            language,
        ],
        outputs=[transcription_output, summary_output, transcription_file, summary_file, processing_time]
    )

print("Launching Gradio interface...")
demo.launch()