import json import os import gradio as gr from distilabel.llms import InferenceEndpointsLLM, LlamaCppLLM from distilabel.steps.tasks.argillalabeller import ArgillaLabeller file_path = os.path.join(os.path.dirname(__file__), "Qwen2-5-0.5B-Instruct-f16.gguf") download_url = "https://huggingface.co/gaianet/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-Q5_K_S.gguf?download=true" if not os.path.exists(file_path): import requests import tqdm response = requests.get(download_url, stream=True) total_length = int(response.headers.get("content-length")) with open(file_path, "wb") as f: for chunk in tqdm.tqdm( response.iter_content(chunk_size=1024 * 1024), total=total_length / (1024 * 1024), unit="KB", unit_scale=True, ): f.write(chunk) llm_cpp = LlamaCppLLM( model_path=file_path, n_gpu_layers=-1, n_ctx=1000 * 114, generation_kwargs={"max_new_tokens": 1000 * 14}, ) task_cpp = ArgillaLabeller(llm=llm_cpp) task_cpp.load() llm_ep = InferenceEndpointsLLM( model_id="meta-llama/Meta-Llama-3.1-8B-Instruct", tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct", generation_kwargs={"max_new_tokens": 1000}, ) task_ep = ArgillaLabeller(llm=llm_ep) task_ep.load() def load_examples(): with open("examples.json", "r") as f: return json.load(f) # Create Gradio examples examples = load_examples() def process_fields(fields): if isinstance(fields, str): fields = json.loads(fields) if isinstance(fields, dict): fields = [fields] return [field if isinstance(field, dict) else json.loads(field) for field in fields] def process_records_gradio(records, fields, question, example_records=None): try: # Convert string inputs to dictionaries if isinstance(records, str) and records: records = json.loads(records) if isinstance(example_records, str) and example_records: example_records = json.loads(example_records) if isinstance(fields, str) and fields: fields = json.loads(fields) if isinstance(question, str) and question: question = json.loads(question) if not fields and not question: raise Exception("Error: Either fields or question must be provided") runtime_parameters = {"fields": fields, "question": question} if example_records: runtime_parameters["example_records"] = example_records task_ep.set_runtime_parameters(runtime_parameters) task_cpp.set_runtime_parameters(runtime_parameters) results = [] try: output = next( task_ep.process(inputs=[{"record": record} for record in records]) ) except Exception: output = next( task_cpp.process(inputs=[{"record": record} for record in records]) ) for idx in range(len(records)): entry = output[idx] if entry["suggestions"]: results.append(entry["suggestions"]) return json.dumps({"results": results}, indent=2) except Exception as e: raise gr.Error(f"Error: {str(e)}") description = """ An example workflow for JSON payload. ```python import json import os from gradio_client import Client import argilla as rg # Initialize Argilla client client = rg.Argilla( api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"] ) # Load the dataset dataset = client.datasets(name="my_dataset", workspace="my_workspace") # Prepare example data example_field = dataset.settings.fields["my_input_field"].serialize() example_question = dataset.settings.questions["my_question_to_predict"].serialize() payload = { "records": [next(dataset.records()).to_dict()], "fields": [example_field], "question": example_question, } # Use gradio client to process the data client = Client("davidberenstein1957/distilabel-argilla-labeller") result = client.predict( records=json.dumps(payload["records"]), example_records=json.dumps(payload["example_records"]), fields=json.dumps(payload["fields"]), question=json.dumps(payload["question"]), api_name="/predict" ) ``` """ interface = gr.Interface( fn=process_records_gradio, inputs=[ gr.Code(label="Records (JSON)", language="json", lines=5), gr.Code(label="Example Records (JSON, optional)", language="json", lines=5), gr.Code(label="Fields (JSON, optional)", language="json"), gr.Code(label="Question (JSON, optional)", language="json"), ], examples=examples, cache_examples=False, outputs=gr.Code(label="Suggestions", language="json", lines=10), title="Distilabel - ArgillaLabeller - Record Processing Interface", description=description, ) if __name__ == "__main__": interface.launch()