|
import io |
|
import multiprocessing |
|
import time |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from datasets import Dataset |
|
from distilabel.distiset import Distiset |
|
from huggingface_hub import upload_file |
|
|
|
from src.distilabel_dataset_generator.pipelines.sft import ( |
|
DEFAULT_DATASET_DESCRIPTIONS, |
|
DEFAULT_DATASETS, |
|
DEFAULT_SYSTEM_PROMPTS, |
|
PROMPT_CREATION_PROMPT, |
|
generate_pipeline_code, |
|
get_pipeline, |
|
get_prompt_generation_step, |
|
) |
|
from src.distilabel_dataset_generator.utils import ( |
|
OAuthToken, |
|
get_login_button, |
|
get_org_dropdown, |
|
swap_visibilty, |
|
) |
|
|
|
|
|
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, is_sample): |
|
pipeline = get_pipeline(num_turns, num_rows, system_prompt, is_sample) |
|
distiset: Distiset = pipeline.run(use_cache=False) |
|
result_queue.put(distiset) |
|
|
|
|
|
def generate_system_prompt(dataset_description, progress=gr.Progress()): |
|
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS: |
|
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description) |
|
if index < len(DEFAULT_SYSTEM_PROMPTS): |
|
return DEFAULT_SYSTEM_PROMPTS[index] |
|
|
|
progress(0.1, desc="Initializing text generation") |
|
generate_description = get_prompt_generation_step() |
|
progress(0.4, desc="Loading model") |
|
generate_description.load() |
|
progress(0.7, desc="Generating system prompt") |
|
result = next( |
|
generate_description.process( |
|
[ |
|
{ |
|
"system_prompt": PROMPT_CREATION_PROMPT, |
|
"instruction": dataset_description, |
|
} |
|
] |
|
) |
|
)[0]["generation"] |
|
progress(1.0, desc="System prompt generated") |
|
return result |
|
|
|
|
|
def generate_sample_dataset(system_prompt, progress=gr.Progress()): |
|
if system_prompt in DEFAULT_SYSTEM_PROMPTS: |
|
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt) |
|
if index < len(DEFAULT_DATASETS): |
|
return DEFAULT_DATASETS[index] |
|
|
|
progress(0.1, desc="Initializing sample dataset generation") |
|
result = generate_dataset( |
|
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True |
|
) |
|
progress(1.0, desc="Sample dataset generated") |
|
return result |
|
|
|
|
|
def _check_push_to_hub(org_name, repo_name): |
|
repo_id = ( |
|
f"{org_name}/{repo_name}" |
|
if repo_name is not None and org_name is not None |
|
else None |
|
) |
|
if repo_id is not None: |
|
if not all([repo_id, org_name, repo_name]): |
|
raise gr.Error( |
|
"Please provide a `repo_name` and `org_name` to push the dataset to." |
|
) |
|
return repo_id |
|
|
|
|
|
def generate_dataset( |
|
system_prompt: str, |
|
num_turns: int = 1, |
|
num_rows: int = 5, |
|
is_sample: bool = False, |
|
progress=gr.Progress(), |
|
): |
|
if num_rows < 5: |
|
duration = 25 |
|
elif num_rows < 10: |
|
duration = 60 |
|
elif num_rows < 30: |
|
duration = 120 |
|
elif num_rows < 100: |
|
duration = 240 |
|
elif num_rows < 300: |
|
duration = 600 |
|
elif num_rows < 1000: |
|
duration = 1200 |
|
else: |
|
duration = 2400 |
|
|
|
result_queue = multiprocessing.Queue() |
|
p = multiprocessing.Process( |
|
target=_run_pipeline, |
|
args=(result_queue, num_turns, num_rows, system_prompt, is_sample), |
|
) |
|
|
|
try: |
|
p.start() |
|
total_steps = 100 |
|
for step in range(total_steps): |
|
if not p.is_alive() or p._popen.poll() is not None: |
|
break |
|
progress( |
|
(step + 1) / total_steps, |
|
desc=f"Generating dataset with {num_rows} rows. Don't close this window.", |
|
) |
|
time.sleep(duration / total_steps) |
|
p.join() |
|
except Exception as e: |
|
raise gr.Error(f"An error occurred during dataset generation: {str(e)}") |
|
|
|
distiset = result_queue.get() |
|
|
|
|
|
distiset = distiset["default"]["train"] |
|
if num_turns == 1: |
|
outputs = distiset.to_pandas()[["prompt", "completion"]] |
|
else: |
|
outputs = distiset.to_pandas()[["messages"]] |
|
dataframe = pd.DataFrame(outputs) |
|
|
|
progress(1.0, desc="Dataset generation completed") |
|
return dataframe |
|
|
|
|
|
def push_to_hub( |
|
dataframe, |
|
private: bool = True, |
|
org_name: str = None, |
|
repo_name: str = None, |
|
oauth_token: OAuthToken = None, |
|
): |
|
distiset = Distiset( |
|
{ |
|
"default": Dataset.from_pandas(dataframe), |
|
} |
|
) |
|
distiset.push_to_hub( |
|
repo_id=f"{org_name}/{repo_name}", |
|
private=private, |
|
include_script=True, |
|
token=oauth_token, |
|
) |
|
return dataframe |
|
|
|
|
|
def upload_pipeline_code( |
|
pipeline_code, org_name, repo_name, oauth_token: OAuthToken = None |
|
): |
|
with io.BytesIO(pipeline_code.encode("utf-8")) as f: |
|
upload_file( |
|
path_or_fileobj=f, |
|
path_in_repo="pipeline.py", |
|
repo_id=f"{org_name}/{repo_name}", |
|
repo_type="dataset", |
|
token=oauth_token, |
|
commit_message="Include pipeline script", |
|
) |
|
|
|
|
|
css = """ |
|
.main_ui_logged_out{opacity: 0.3; pointer-events: none} |
|
""" |
|
|
|
with gr.Blocks( |
|
title="🧬 Synthetic Data Generator", |
|
head="🧬 Synthetic Data Generator", |
|
css=css, |
|
) as app: |
|
with gr.Row(): |
|
gr.Markdown( |
|
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation." |
|
) |
|
with gr.Row(): |
|
gr.Column() |
|
get_login_button() |
|
gr.Column() |
|
|
|
gr.Markdown("## Iterate on a sample dataset") |
|
with gr.Column() as main_ui: |
|
dataset_description = gr.TextArea( |
|
label="Give a precise description of the assistant or tool. Don't describe the dataset", |
|
value=DEFAULT_DATASET_DESCRIPTIONS[0], |
|
lines=2, |
|
) |
|
examples = gr.Examples( |
|
elem_id="system_prompt_examples", |
|
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS], |
|
inputs=[dataset_description], |
|
) |
|
with gr.Row(): |
|
gr.Column(scale=1) |
|
btn_generate_system_prompt = gr.Button(value="Generate sample") |
|
gr.Column(scale=1) |
|
|
|
system_prompt = gr.TextArea( |
|
label="System prompt for dataset generation. You can tune it and regenerate the sample", |
|
value=DEFAULT_SYSTEM_PROMPTS[0], |
|
lines=5, |
|
) |
|
|
|
with gr.Row(): |
|
sample_dataset = gr.DataFrame( |
|
value=DEFAULT_DATASETS[0], |
|
label="Sample dataset. Prompts and completions truncated to 256 tokens.", |
|
interactive=False, |
|
wrap=True, |
|
) |
|
|
|
with gr.Row(): |
|
gr.Column(scale=1) |
|
btn_generate_sample_dataset = gr.Button( |
|
value="Regenerate sample", |
|
) |
|
gr.Column(scale=1) |
|
|
|
result = btn_generate_system_prompt.click( |
|
fn=generate_system_prompt, |
|
inputs=[dataset_description], |
|
outputs=[system_prompt], |
|
show_progress=True, |
|
).then( |
|
fn=generate_sample_dataset, |
|
inputs=[system_prompt], |
|
outputs=[sample_dataset], |
|
show_progress=True, |
|
) |
|
|
|
btn_generate_sample_dataset.click( |
|
fn=generate_sample_dataset, |
|
inputs=[system_prompt], |
|
outputs=[sample_dataset], |
|
show_progress=True, |
|
) |
|
|
|
|
|
gr.Markdown("## Generate full dataset") |
|
gr.Markdown( |
|
"Once you're satisfied with the sample, generate a larger dataset and push it to the Hub." |
|
) |
|
|
|
with gr.Column() as push_to_hub_ui: |
|
with gr.Row(variant="panel"): |
|
num_turns = gr.Number( |
|
value=1, |
|
label="Number of turns in the conversation", |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).", |
|
) |
|
num_rows = gr.Number( |
|
value=10, |
|
label="Number of rows in the dataset", |
|
minimum=1, |
|
maximum=500, |
|
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.", |
|
) |
|
with gr.Row(variant="panel"): |
|
org_name = get_org_dropdown() |
|
repo_name = gr.Textbox( |
|
label="Repo name", placeholder="dataset_name", value="my-distiset" |
|
) |
|
private = gr.Checkbox( |
|
label="Private dataset", |
|
value=True, |
|
interactive=True, |
|
scale=0.5, |
|
) |
|
with gr.Row() as regenerate_row: |
|
btn_generate_full_dataset = gr.Button( |
|
value="Generate", variant="primary", scale=2 |
|
) |
|
btn_generate_and_push_to_hub = gr.Button( |
|
value="Generate and Push to Hub", variant="primary", scale=2 |
|
) |
|
btn_push_to_hub = gr.Button( |
|
value="Push to Hub", variant="primary", scale=2 |
|
) |
|
with gr.Row(): |
|
final_dataset = gr.DataFrame( |
|
value=DEFAULT_DATASETS[0], |
|
label="Generated dataset", |
|
interactive=False, |
|
wrap=True, |
|
) |
|
|
|
with gr.Row(): |
|
success_message = gr.Markdown(visible=False) |
|
|
|
def show_success_message(org_name, repo_name): |
|
return gr.Markdown( |
|
value=f""" |
|
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;"> |
|
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3> |
|
<p style="margin-top: 0.5em;"> |
|
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks. |
|
Your dataset is now available at: |
|
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;"> |
|
https://huggingface.co/datasets/{org_name}/{repo_name} |
|
</a> |
|
</p> |
|
</div> |
|
""", |
|
visible=True, |
|
) |
|
|
|
def hide_success_message(): |
|
return gr.Markdown(visible=False) |
|
|
|
gr.Markdown("## Or run this pipeline locally with distilabel") |
|
|
|
with gr.Accordion( |
|
"Run this pipeline using distilabel", |
|
open=False, |
|
): |
|
pipeline_code = gr.Code( |
|
value=generate_pipeline_code( |
|
system_prompt.value, num_turns.value, num_rows.value |
|
), |
|
language="python", |
|
label="Distilabel Pipeline Code", |
|
) |
|
|
|
sample_dataset.change( |
|
fn=lambda x: x, |
|
inputs=[sample_dataset], |
|
outputs=[final_dataset], |
|
) |
|
|
|
btn_generate_full_dataset.click( |
|
fn=hide_success_message, |
|
outputs=[success_message], |
|
).then( |
|
fn=generate_dataset, |
|
inputs=[system_prompt, num_turns, num_rows], |
|
outputs=[final_dataset], |
|
show_progress=True, |
|
) |
|
btn_generate_and_push_to_hub.click( |
|
fn=hide_success_message, |
|
outputs=[success_message], |
|
).then( |
|
fn=generate_dataset, |
|
inputs=[system_prompt, num_turns, num_rows], |
|
outputs=[final_dataset], |
|
show_progress=True, |
|
).then( |
|
fn=push_to_hub, |
|
inputs=[final_dataset, private, org_name, repo_name], |
|
outputs=[final_dataset], |
|
show_progress=True, |
|
).then( |
|
fn=upload_pipeline_code, |
|
inputs=[pipeline_code, org_name, repo_name], |
|
outputs=[], |
|
).success( |
|
fn=show_success_message, |
|
inputs=[org_name, repo_name], |
|
outputs=[success_message], |
|
) |
|
|
|
btn_push_to_hub.click( |
|
fn=push_to_hub, |
|
inputs=[final_dataset, private, org_name, repo_name], |
|
outputs=[final_dataset], |
|
).then( |
|
fn=upload_pipeline_code, |
|
inputs=[pipeline_code, org_name, repo_name], |
|
outputs=[], |
|
).success( |
|
fn=show_success_message, |
|
inputs=[org_name, repo_name], |
|
outputs=[success_message], |
|
) |
|
|
|
system_prompt.change( |
|
fn=generate_pipeline_code, |
|
inputs=[system_prompt, num_turns, num_rows], |
|
outputs=[pipeline_code], |
|
) |
|
num_turns.change( |
|
fn=generate_pipeline_code, |
|
inputs=[system_prompt, num_turns, num_rows], |
|
outputs=[pipeline_code], |
|
) |
|
num_rows.change( |
|
fn=generate_pipeline_code, |
|
inputs=[system_prompt, num_turns, num_rows], |
|
outputs=[pipeline_code], |
|
) |
|
app.load(get_org_dropdown, outputs=[org_name]) |
|
app.load(fn=swap_visibilty, outputs=main_ui) |
|
|