Commit
·
371c76b
1
Parent(s):
3c6a88c
Update version to 0.1.6, remove requirements.txt, and enhance dataset handling in pipelines. Added Gradio support and improved LLM class retrieval. Commented out HF_TOKEN in example deployment script.
Browse files
pyproject.toml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
[project]
|
2 |
name = "synthetic-dataset-generator"
|
3 |
-
version = "0.1.
|
4 |
description = "Build datasets using natural language"
|
5 |
authors = [
|
6 |
{name = "davidberenstein1957", email = "david.m.berenstein@gmail.com"},
|
|
|
1 |
[project]
|
2 |
name = "synthetic-dataset-generator"
|
3 |
+
version = "0.1.6"
|
4 |
description = "Build datasets using natural language"
|
5 |
authors = [
|
6 |
{name = "davidberenstein1957", email = "david.m.berenstein@gmail.com"},
|
requirements.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
-e git+https://github.com/argilla-io/synthetic-data-generator.git#egg=synthetic-dataset-generator
|
|
|
|
src/synthetic_dataset_generator/_distiset.py
CHANGED
@@ -2,6 +2,7 @@ from typing import Optional
|
|
2 |
|
3 |
import distilabel
|
4 |
import distilabel.distiset
|
|
|
5 |
from distilabel.utils.card.dataset_card import (
|
6 |
DistilabelDatasetCard,
|
7 |
size_categories_parser,
|
@@ -81,14 +82,23 @@ class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset):
|
|
81 |
dataset[0] if not isinstance(dataset, dict) else dataset["train"][0]
|
82 |
)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
):
|
89 |
task_categories = ["text-classification"]
|
90 |
-
elif "prompt" in
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
readme_metadata = {}
|
94 |
if repo_id and token:
|
|
|
2 |
|
3 |
import distilabel
|
4 |
import distilabel.distiset
|
5 |
+
import gradio as gr
|
6 |
from distilabel.utils.card.dataset_card import (
|
7 |
DistilabelDatasetCard,
|
8 |
size_categories_parser,
|
|
|
82 |
dataset[0] if not isinstance(dataset, dict) else dataset["train"][0]
|
83 |
)
|
84 |
|
85 |
+
columns = self["default"].column_names
|
86 |
+
columns = self["default"].column_names
|
87 |
+
|
88 |
+
if ("label" in columns and "text" in columns) or (
|
89 |
+
"labels" in columns and "text" in columns
|
90 |
):
|
91 |
task_categories = ["text-classification"]
|
92 |
+
elif ("prompt" in columns and "completion" in columns) or (
|
93 |
+
"messages" in columns
|
94 |
+
):
|
95 |
+
task_categories: list[str] = ["text-generation", "text2text-generation"]
|
96 |
+
else:
|
97 |
+
task_categories: list[str] = []
|
98 |
+
gr.Info(
|
99 |
+
f"No task categories found for dataset with columns: {columns}. "
|
100 |
+
"Please notify the distilabel team if you think this is an error."
|
101 |
+
)
|
102 |
|
103 |
readme_metadata = {}
|
104 |
if repo_id and token:
|
src/synthetic_dataset_generator/pipelines/base.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import math
|
2 |
import random
|
3 |
|
4 |
-
import gradio as gr
|
5 |
from distilabel.llms import ClientvLLM, InferenceEndpointsLLM, OllamaLLM, OpenAILLM
|
6 |
from distilabel.steps.tasks import TextGeneration
|
7 |
|
@@ -9,7 +8,6 @@ from synthetic_dataset_generator.constants import (
|
|
9 |
API_KEYS,
|
10 |
DEFAULT_BATCH_SIZE,
|
11 |
HUGGINGFACE_BASE_URL,
|
12 |
-
MAGPIE_PRE_QUERY_TEMPLATE,
|
13 |
MODEL,
|
14 |
OLLAMA_BASE_URL,
|
15 |
OPENAI_BASE_URL,
|
@@ -62,6 +60,19 @@ def get_rewriten_prompts(prompt: str, num_rows: int):
|
|
62 |
return prompt_rewrites
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def _get_llm(use_magpie_template=False, **kwargs):
|
66 |
if OPENAI_BASE_URL:
|
67 |
llm = OpenAILLM(
|
@@ -100,6 +111,7 @@ def _get_llm(use_magpie_template=False, **kwargs):
|
|
100 |
model=MODEL,
|
101 |
host=OLLAMA_BASE_URL,
|
102 |
tokenizer_id=TOKENIZER_ID or MODEL,
|
|
|
103 |
**kwargs,
|
104 |
)
|
105 |
elif HUGGINGFACE_BASE_URL:
|
@@ -108,6 +120,7 @@ def _get_llm(use_magpie_template=False, **kwargs):
|
|
108 |
api_key=_get_next_api_key(),
|
109 |
base_url=HUGGINGFACE_BASE_URL,
|
110 |
tokenizer_id=TOKENIZER_ID or MODEL,
|
|
|
111 |
**kwargs,
|
112 |
)
|
113 |
elif VLLM_BASE_URL:
|
@@ -119,6 +132,7 @@ def _get_llm(use_magpie_template=False, **kwargs):
|
|
119 |
model=MODEL,
|
120 |
tokenizer=TOKENIZER_ID or MODEL,
|
121 |
api_key=_get_next_api_key(),
|
|
|
122 |
**kwargs,
|
123 |
)
|
124 |
else:
|
@@ -126,7 +140,7 @@ def _get_llm(use_magpie_template=False, **kwargs):
|
|
126 |
api_key=_get_next_api_key(),
|
127 |
tokenizer_id=TOKENIZER_ID or MODEL,
|
128 |
model_id=MODEL,
|
129 |
-
|
130 |
**kwargs,
|
131 |
)
|
132 |
|
@@ -138,4 +152,4 @@ try:
|
|
138 |
llm.load()
|
139 |
llm.generate([[{"content": "Hello, world!", "role": "user"}]])
|
140 |
except Exception as e:
|
141 |
-
|
|
|
1 |
import math
|
2 |
import random
|
3 |
|
|
|
4 |
from distilabel.llms import ClientvLLM, InferenceEndpointsLLM, OllamaLLM, OpenAILLM
|
5 |
from distilabel.steps.tasks import TextGeneration
|
6 |
|
|
|
8 |
API_KEYS,
|
9 |
DEFAULT_BATCH_SIZE,
|
10 |
HUGGINGFACE_BASE_URL,
|
|
|
11 |
MODEL,
|
12 |
OLLAMA_BASE_URL,
|
13 |
OPENAI_BASE_URL,
|
|
|
60 |
return prompt_rewrites
|
61 |
|
62 |
|
63 |
+
def _get_llm_class() -> str:
|
64 |
+
if OPENAI_BASE_URL:
|
65 |
+
return "OpenAILLM"
|
66 |
+
elif OLLAMA_BASE_URL:
|
67 |
+
return "OllamaLLM"
|
68 |
+
elif HUGGINGFACE_BASE_URL:
|
69 |
+
return "InferenceEndpointsLLM"
|
70 |
+
elif VLLM_BASE_URL:
|
71 |
+
return "ClientvLLM"
|
72 |
+
else:
|
73 |
+
return "InferenceEndpointsLLM"
|
74 |
+
|
75 |
+
|
76 |
def _get_llm(use_magpie_template=False, **kwargs):
|
77 |
if OPENAI_BASE_URL:
|
78 |
llm = OpenAILLM(
|
|
|
111 |
model=MODEL,
|
112 |
host=OLLAMA_BASE_URL,
|
113 |
tokenizer_id=TOKENIZER_ID or MODEL,
|
114 |
+
use_magpie_template=use_magpie_template,
|
115 |
**kwargs,
|
116 |
)
|
117 |
elif HUGGINGFACE_BASE_URL:
|
|
|
120 |
api_key=_get_next_api_key(),
|
121 |
base_url=HUGGINGFACE_BASE_URL,
|
122 |
tokenizer_id=TOKENIZER_ID or MODEL,
|
123 |
+
use_magpie_template=use_magpie_template,
|
124 |
**kwargs,
|
125 |
)
|
126 |
elif VLLM_BASE_URL:
|
|
|
132 |
model=MODEL,
|
133 |
tokenizer=TOKENIZER_ID or MODEL,
|
134 |
api_key=_get_next_api_key(),
|
135 |
+
use_magpie_template=use_magpie_template,
|
136 |
**kwargs,
|
137 |
)
|
138 |
else:
|
|
|
140 |
api_key=_get_next_api_key(),
|
141 |
tokenizer_id=TOKENIZER_ID or MODEL,
|
142 |
model_id=MODEL,
|
143 |
+
use_magpie_template=use_magpie_template,
|
144 |
**kwargs,
|
145 |
)
|
146 |
|
|
|
152 |
llm.load()
|
153 |
llm.generate([[{"content": "Hello, world!", "role": "user"}]])
|
154 |
except Exception as e:
|
155 |
+
raise Exception(f"Error loading {llm.__class__.__name__}: {e}")
|
src/synthetic_dataset_generator/pipelines/chat.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
from distilabel.steps.tasks import ChatGeneration, Magpie, TextGeneration
|
2 |
|
3 |
from synthetic_dataset_generator.constants import (
|
4 |
-
BASE_URL,
|
5 |
MAGPIE_PRE_QUERY_TEMPLATE,
|
6 |
MAX_NUM_TOKENS,
|
7 |
-
MODEL,
|
8 |
)
|
9 |
-
from synthetic_dataset_generator.pipelines.base import _get_llm
|
10 |
|
11 |
INFORMATION_SEEKING_PROMPT = (
|
12 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
@@ -237,28 +235,13 @@ import os
|
|
237 |
from distilabel.pipeline import Pipeline
|
238 |
from distilabel.steps import KeepColumns
|
239 |
from distilabel.steps.tasks import MagpieGenerator
|
240 |
-
from distilabel.llms import
|
241 |
|
242 |
-
MODEL = "{MODEL}"
|
243 |
-
BASE_URL = "{BASE_URL}"
|
244 |
SYSTEM_PROMPT = "{system_prompt}"
|
245 |
-
os.environ["API_KEY"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
246 |
|
247 |
with Pipeline(name="sft") as pipeline:
|
248 |
magpie = MagpieGenerator(
|
249 |
-
llm=
|
250 |
-
model_id=MODEL,
|
251 |
-
tokenizer_id=MODEL,
|
252 |
-
base_url=BASE_URL,
|
253 |
-
magpie_pre_query_template="llama3",
|
254 |
-
generation_kwargs={{
|
255 |
-
"temperature": {temperature},
|
256 |
-
"do_sample": True,
|
257 |
-
"max_new_tokens": {MAX_NUM_TOKENS},
|
258 |
-
"stop_sequences": {_STOP_SEQUENCES}
|
259 |
-
}},
|
260 |
-
api_key=os.environ["API_KEY"],
|
261 |
-
),
|
262 |
n_turns={num_turns},
|
263 |
num_rows={num_rows},
|
264 |
batch_size=1,
|
|
|
1 |
from distilabel.steps.tasks import ChatGeneration, Magpie, TextGeneration
|
2 |
|
3 |
from synthetic_dataset_generator.constants import (
|
|
|
4 |
MAGPIE_PRE_QUERY_TEMPLATE,
|
5 |
MAX_NUM_TOKENS,
|
|
|
6 |
)
|
7 |
+
from synthetic_dataset_generator.pipelines.base import _get_llm, _get_llm_class
|
8 |
|
9 |
INFORMATION_SEEKING_PROMPT = (
|
10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
|
235 |
from distilabel.pipeline import Pipeline
|
236 |
from distilabel.steps import KeepColumns
|
237 |
from distilabel.steps.tasks import MagpieGenerator
|
238 |
+
from distilabel.llms import {_get_llm_class()}
|
239 |
|
|
|
|
|
240 |
SYSTEM_PROMPT = "{system_prompt}"
|
|
|
241 |
|
242 |
with Pipeline(name="sft") as pipeline:
|
243 |
magpie = MagpieGenerator(
|
244 |
+
llm={_get_llm_class()}.from_json({_get_llm().model_dump_json()})},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
n_turns={num_turns},
|
246 |
num_rows={num_rows},
|
247 |
batch_size=1,
|
src/synthetic_dataset_generator/pipelines/textcat.py
CHANGED
@@ -9,11 +9,9 @@ from distilabel.steps.tasks import (
|
|
9 |
from pydantic import BaseModel, Field
|
10 |
|
11 |
from synthetic_dataset_generator.constants import (
|
12 |
-
BASE_URL,
|
13 |
MAX_NUM_TOKENS,
|
14 |
-
MODEL,
|
15 |
)
|
16 |
-
from synthetic_dataset_generator.pipelines.base import _get_llm
|
17 |
from synthetic_dataset_generator.utils import get_preprocess_labels
|
18 |
|
19 |
PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.
|
@@ -131,39 +129,21 @@ def generate_pipeline_code(
|
|
131 |
temperature: float = 0.9,
|
132 |
) -> str:
|
133 |
labels = get_preprocess_labels(labels)
|
134 |
-
MODEL_ARG = "model_id" if BASE_URL else "model"
|
135 |
-
MODEL_CLASS = "InferenceEndpointsLLM" if BASE_URL else "OpenAILLM"
|
136 |
base_code = f"""
|
137 |
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
138 |
import os
|
139 |
import random
|
140 |
-
from distilabel.llms import
|
141 |
from distilabel.pipeline import Pipeline
|
142 |
from distilabel.steps import LoadDataFromDicts, KeepColumns
|
143 |
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}
|
144 |
|
145 |
-
MODEL = "{MODEL}"
|
146 |
-
BASE_URL = "{BASE_URL}"
|
147 |
-
TEXT_CLASSIFICATION_TASK = "{system_prompt}"
|
148 |
-
os.environ["API_KEY"] = (
|
149 |
-
"hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
150 |
-
)
|
151 |
-
|
152 |
with Pipeline(name="textcat") as pipeline:
|
153 |
|
154 |
task_generator = LoadDataFromDicts(data=[{{"task": TEXT_CLASSIFICATION_TASK}}])
|
155 |
|
156 |
textcat_generation = GenerateTextClassificationData(
|
157 |
-
llm={
|
158 |
-
{MODEL_ARG}=MODEL,
|
159 |
-
base_url=BASE_URL,
|
160 |
-
api_key=os.environ["API_KEY"],
|
161 |
-
generation_kwargs={{
|
162 |
-
"temperature": {temperature},
|
163 |
-
"max_new_tokens": {MAX_NUM_TOKENS},
|
164 |
-
"top_p": 0.95,
|
165 |
-
}},
|
166 |
-
),
|
167 |
seed=random.randint(0, 2**32 - 1),
|
168 |
difficulty={None if difficulty == "mixed" else repr(difficulty)},
|
169 |
clarity={None if clarity == "mixed" else repr(clarity)},
|
@@ -196,15 +176,7 @@ with Pipeline(name="textcat") as pipeline:
|
|
196 |
)
|
197 |
|
198 |
textcat_labeller = TextClassification(
|
199 |
-
llm={
|
200 |
-
{MODEL_ARG}=MODEL,
|
201 |
-
base_url=BASE_URL,
|
202 |
-
api_key=os.environ["API_KEY"],
|
203 |
-
generation_kwargs={{
|
204 |
-
"temperature": 0.8,
|
205 |
-
"max_new_tokens": {MAX_NUM_TOKENS},
|
206 |
-
}},
|
207 |
-
),
|
208 |
n={num_labels},
|
209 |
available_labels={labels},
|
210 |
context=TEXT_CLASSIFICATION_TASK,
|
|
|
9 |
from pydantic import BaseModel, Field
|
10 |
|
11 |
from synthetic_dataset_generator.constants import (
|
|
|
12 |
MAX_NUM_TOKENS,
|
|
|
13 |
)
|
14 |
+
from synthetic_dataset_generator.pipelines.base import _get_llm, _get_llm_class
|
15 |
from synthetic_dataset_generator.utils import get_preprocess_labels
|
16 |
|
17 |
PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.
|
|
|
129 |
temperature: float = 0.9,
|
130 |
) -> str:
|
131 |
labels = get_preprocess_labels(labels)
|
|
|
|
|
132 |
base_code = f"""
|
133 |
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
134 |
import os
|
135 |
import random
|
136 |
+
from distilabel.llms import {_get_llm_class()}
|
137 |
from distilabel.pipeline import Pipeline
|
138 |
from distilabel.steps import LoadDataFromDicts, KeepColumns
|
139 |
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
with Pipeline(name="textcat") as pipeline:
|
142 |
|
143 |
task_generator = LoadDataFromDicts(data=[{{"task": TEXT_CLASSIFICATION_TASK}}])
|
144 |
|
145 |
textcat_generation = GenerateTextClassificationData(
|
146 |
+
llm={_get_llm_class()}.from_json({_get_llm().model_dump_json()}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
seed=random.randint(0, 2**32 - 1),
|
148 |
difficulty={None if difficulty == "mixed" else repr(difficulty)},
|
149 |
clarity={None if clarity == "mixed" else repr(clarity)},
|
|
|
176 |
)
|
177 |
|
178 |
textcat_labeller = TextClassification(
|
179 |
+
llm={_get_llm_class()}.from_json({_get_llm().model_dump_json()}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
n={num_labels},
|
181 |
available_labels={labels},
|
182 |
context=TEXT_CLASSIFICATION_TASK,
|