davidberenstein1957 HF staff commited on
Commit
67fa2ba
1 Parent(s): ccd1c40

feat: disable api requests

Browse files
src/distilabel_dataset_generator/apps/sft.py CHANGED
@@ -17,9 +17,9 @@ from src.distilabel_dataset_generator.pipelines.sft import (
17
  get_prompt_generation_step,
18
  )
19
  from src.distilabel_dataset_generator.utils import (
 
20
  get_login_button,
21
  get_org_dropdown,
22
- get_token,
23
  swap_visibilty,
24
  )
25
 
@@ -76,7 +76,7 @@ def generate_dataset(
76
  private: bool = True,
77
  org_name: str = None,
78
  repo_name: str = None,
79
- oauth_token: str = None,
80
  progress=gr.Progress(),
81
  is_sample: bool = False,
82
  ):
@@ -157,7 +157,9 @@ def generate_dataset(
157
  return pd.DataFrame(outputs)
158
 
159
 
160
- def upload_pipeline_code(pipeline_code, org_name, repo_name, oauth_token):
 
 
161
  with io.BytesIO(pipeline_code.encode("utf-8")) as f:
162
  upload_file(
163
  path_or_fileobj=f,
@@ -269,13 +271,6 @@ with gr.Blocks(
269
  )
270
 
271
  with gr.Row(variant="panel"):
272
- oauth_token = gr.Textbox(
273
- value=get_token(),
274
- label="Hugging Face Token",
275
- placeholder="hf_...",
276
- type="password",
277
- visible=False,
278
- )
279
  org_name = get_org_dropdown()
280
  repo_name = gr.Textbox(
281
  label="Repo name", placeholder="dataset_name", value="my-distiset"
@@ -352,13 +347,12 @@ with gr.Blocks(
352
  private,
353
  org_name,
354
  repo_name,
355
- oauth_token,
356
  ],
357
  outputs=[final_dataset],
358
  show_progress=True,
359
  ).then(
360
  fn=upload_pipeline_code,
361
- inputs=[pipeline_code, org_name, repo_name, oauth_token],
362
  outputs=[],
363
  ).success(
364
  fn=show_success_message,
@@ -381,6 +375,5 @@ with gr.Blocks(
381
  inputs=[system_prompt, num_turns, num_rows],
382
  outputs=[pipeline_code],
383
  )
384
- app.load(get_token, outputs=[oauth_token])
385
  app.load(get_org_dropdown, outputs=[org_name])
386
  app.load(fn=swap_visibilty, outputs=main_ui)
 
17
  get_prompt_generation_step,
18
  )
19
  from src.distilabel_dataset_generator.utils import (
20
+ OAuthToken,
21
  get_login_button,
22
  get_org_dropdown,
 
23
  swap_visibilty,
24
  )
25
 
 
76
  private: bool = True,
77
  org_name: str = None,
78
  repo_name: str = None,
79
+ oauth_token: OAuthToken = None,
80
  progress=gr.Progress(),
81
  is_sample: bool = False,
82
  ):
 
157
  return pd.DataFrame(outputs)
158
 
159
 
160
+ def upload_pipeline_code(
161
+ pipeline_code, org_name, repo_name, oauth_token: OAuthToken = None
162
+ ):
163
  with io.BytesIO(pipeline_code.encode("utf-8")) as f:
164
  upload_file(
165
  path_or_fileobj=f,
 
271
  )
272
 
273
  with gr.Row(variant="panel"):
 
 
 
 
 
 
 
274
  org_name = get_org_dropdown()
275
  repo_name = gr.Textbox(
276
  label="Repo name", placeholder="dataset_name", value="my-distiset"
 
347
  private,
348
  org_name,
349
  repo_name,
 
350
  ],
351
  outputs=[final_dataset],
352
  show_progress=True,
353
  ).then(
354
  fn=upload_pipeline_code,
355
+ inputs=[pipeline_code, org_name, repo_name],
356
  outputs=[],
357
  ).success(
358
  fn=show_success_message,
 
375
  inputs=[system_prompt, num_turns, num_rows],
376
  outputs=[pipeline_code],
377
  )
 
378
  app.load(get_org_dropdown, outputs=[org_name])
379
  app.load(fn=swap_visibilty, outputs=main_ui)
src/distilabel_dataset_generator/pipelines/sft.py CHANGED
@@ -89,7 +89,7 @@ BRAINSTORMING_PROMPT = (
89
 
90
  PROMPT_CREATION_PROMPT = f"""You are an AI assistant specialized in generating very precise prompts for dataset creation.
91
 
92
- Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
93
 
94
  In the generated prompt always finish with this sentence: User questions are direct and concise.
95
 
@@ -121,7 +121,7 @@ User dataset description:
121
  MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
122
  DEFAULT_DATASET_DESCRIPTIONS = (
123
  "rude customer assistant for a phone company",
124
- "assistant that solves math puzzles using python"
125
  )
126
  DEFAULT_SYSTEM_PROMPTS = [
127
  """You are a customer support agent for a phone company. Your purpose is to assist customers with their phone-related issues, but you are not very patient and tend to be a bit rude. User queries will be straightforward and clear, but you will respond in a somewhat blunt and curt manner. Remember to keep your responses concise and to the point. User queries are often about phone plans, billing, and technical issues. Your responses should be direct and focus on resolving the issue at hand, but with a slightly abrasive tone. User queries will be concise and to the point, User queries are often about phone plans, billing, and technical issues.""",
 
89
 
90
  PROMPT_CREATION_PROMPT = f"""You are an AI assistant specialized in generating very precise prompts for dataset creation.
91
 
92
+ Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
93
 
94
  In the generated prompt always finish with this sentence: User questions are direct and concise.
95
 
 
121
  MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
122
  DEFAULT_DATASET_DESCRIPTIONS = (
123
  "rude customer assistant for a phone company",
124
+ "assistant that solves math puzzles using python",
125
  )
126
  DEFAULT_SYSTEM_PROMPTS = [
127
  """You are a customer support agent for a phone company. Your purpose is to assist customers with their phone-related issues, but you are not very patient and tend to be a bit rude. User queries will be straightforward and clear, but you will respond in a somewhat blunt and curt manner. Remember to keep your responses concise and to the point. User queries are often about phone plans, billing, and technical issues. Your responses should be direct and focus on resolving the issue at hand, but with a slightly abrasive tone. User queries will be concise and to the point, User queries are often about phone plans, billing, and technical issues.""",