webhook-labeler / app.py
davidberenstein1957's picture
Update app.py
cc9bba0 verified
raw
history blame
4.09 kB
import json
import traceback
from queue import Queue
from threading import Thread
from typing import List
import argilla as rg
import gradio as gr
from gradio_client import Client
client = rg.Argilla()
completed_record_events = Queue()
def build_dataset(client: rg.Argilla) -> rg.Dataset:
settings = rg.Settings.from_hub("stanfordnlp/imdb")
settings.questions.add(
rg.LabelQuestion(name="sentiment", labels=["negative", "positive"])
)
dataset_name = "stanfordnlp_imdb"
dataset = client.datasets(dataset_name) or rg.Dataset.from_hub(
"stanfordnlp/imdb",
name=dataset_name,
settings=settings,
client=client,
split="train[:1000]",
)
return dataset
with gr.Blocks() as demo:
argilla_server = client.http_client.base_url
gr.Markdown("## Argilla Events")
gr.Markdown(
f"This demo shows the incoming events from the [Argilla Server]({argilla_server})."
)
gr.Markdown("### Record Events")
gr.Markdown("#### Records are processed in background and suggestions are added.")
server, _, _ = demo.launch(prevent_thread_lock=True, app_kwargs={"docs_url": "/docs"})
# Set up the webhook listeners
rg.set_webhook_server(server)
for webhook in client.webhooks:
webhook.enabled = False
webhook.update()
# Create a webhook for record events
@rg.webhook_listener(events="record.completed")
async def record_events(record: rg.Record, type: str, **kwargs):
print("Received event", type)
completed_record_events.put(record)
dataset = build_dataset(client)
def add_record_suggestions_on_response_created():
print("Starting thread")
completed_records_filter = rg.Filter(("status", "==", "completed"))
pending_records_filter = rg.Filter(("status", "==", "pending"))
while True:
try:
record: rg.Record = completed_record_events.get()
if dataset.id != record.dataset.id:
continue
# Prepare predict data
field = dataset.settings.fields["text"]
question = dataset.settings.questions["sentiment"]
examples = list(
dataset.records(
query=rg.Query(filter=completed_records_filter),
limit=5,
)
)
some_pending_records = list(
dataset.records(
query=rg.Query(filter=pending_records_filter),
limit=5,
)
)
if not some_pending_records:
continue
some_pending_records = parse_pending_records(
some_pending_records, field, question, examples
)
dataset.records.log(some_pending_records)
except Exception:
print(traceback.format_exc())
continue
def parse_pending_records(
records: List[rg.Record],
field: rg.Field,
question,
example_records: List[rg.Record],
) -> List[rg.Record]:
try:
gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller")
payload = {
"records": [record.to_dict() for record in records],
"fields": [field.serialize()],
"question": question.serialize(),
"example_records": [record.to_dict() for record in example_records],
"api_name": "/predict",
}
response = gradio_client.predict(**payload)
response = json.loads(response) if isinstance(response, str) else response
for record, suggestion in zip(records, response["results"]):
record.suggestions.add(
rg.Suggestion(
question_name=question.name,
value=suggestion["value"],
score=suggestion["score"],
agent=suggestion["agent"],
)
)
except Exception:
print(traceback.format_exc())
return records
thread = Thread(target=add_record_suggestions_on_response_created)
thread.start()
demo.block_thread()