Spaces:
Sleeping
Sleeping
Commit
•
c931653
1
Parent(s):
48548de
feat: add payload code
Browse files
app.py
CHANGED
@@ -16,7 +16,9 @@ completed_record_events = Queue()
|
|
16 |
def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
17 |
settings = rg.Settings.from_hub("stanfordnlp/imdb")
|
18 |
|
19 |
-
settings.questions.add(
|
|
|
|
|
20 |
|
21 |
dataset_name = "stanfordnlp_imdb"
|
22 |
dataset = client.datasets(dataset_name) or rg.Dataset.from_hub(
|
@@ -24,7 +26,7 @@ def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
|
24 |
name=dataset_name,
|
25 |
settings=settings,
|
26 |
client=client,
|
27 |
-
split="train[:1000]"
|
28 |
)
|
29 |
|
30 |
return dataset
|
@@ -33,7 +35,9 @@ def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
|
33 |
with gr.Blocks() as demo:
|
34 |
argilla_server = client.http_client.base_url
|
35 |
gr.Markdown("## Argilla Events")
|
36 |
-
gr.Markdown(
|
|
|
|
|
37 |
gr.Markdown("### Record Events")
|
38 |
gr.Markdown("#### Records are processed in background and suggestions are added.")
|
39 |
|
@@ -72,7 +76,6 @@ def add_record_suggestions_on_response_created():
|
|
72 |
continue
|
73 |
|
74 |
# Prepare predict data
|
75 |
-
|
76 |
field = dataset.settings.fields["text"]
|
77 |
question = dataset.settings.questions["sentiment"]
|
78 |
|
@@ -93,7 +96,9 @@ def add_record_suggestions_on_response_created():
|
|
93 |
if not some_pending_records:
|
94 |
continue
|
95 |
|
96 |
-
some_pending_records = parse_pending_records(
|
|
|
|
|
97 |
dataset.records.log(some_pending_records)
|
98 |
|
99 |
except Exception:
|
@@ -105,42 +110,33 @@ def parse_pending_records(
|
|
105 |
records: List[rg.Record],
|
106 |
field: rg.Field,
|
107 |
question,
|
108 |
-
example_records: List[rg.Record]
|
109 |
) -> List[rg.Record]:
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
"results": [{"value": "positive", "score": None, "agent": "mock"} for _ in records]
|
133 |
-
}
|
134 |
-
|
135 |
-
for record, suggestion in zip(records, response["results"]):
|
136 |
-
record.suggestions.add(
|
137 |
-
rg.Suggestion(
|
138 |
-
question_name=question.name,
|
139 |
-
value=suggestion["value"],
|
140 |
-
score=suggestion["score"],
|
141 |
-
agent=suggestion["agent"],
|
142 |
)
|
143 |
-
|
|
|
144 |
|
145 |
return records
|
146 |
|
|
|
16 |
def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
17 |
settings = rg.Settings.from_hub("stanfordnlp/imdb")
|
18 |
|
19 |
+
settings.questions.add(
|
20 |
+
rg.LabelQuestion(name="sentiment", labels=["negative", "positive"])
|
21 |
+
)
|
22 |
|
23 |
dataset_name = "stanfordnlp_imdb"
|
24 |
dataset = client.datasets(dataset_name) or rg.Dataset.from_hub(
|
|
|
26 |
name=dataset_name,
|
27 |
settings=settings,
|
28 |
client=client,
|
29 |
+
split="train[:1000]",
|
30 |
)
|
31 |
|
32 |
return dataset
|
|
|
35 |
with gr.Blocks() as demo:
|
36 |
argilla_server = client.http_client.base_url
|
37 |
gr.Markdown("## Argilla Events")
|
38 |
+
gr.Markdown(
|
39 |
+
f"This demo shows the incoming events from the [Argilla Server]({argilla_server})."
|
40 |
+
)
|
41 |
gr.Markdown("### Record Events")
|
42 |
gr.Markdown("#### Records are processed in background and suggestions are added.")
|
43 |
|
|
|
76 |
continue
|
77 |
|
78 |
# Prepare predict data
|
|
|
79 |
field = dataset.settings.fields["text"]
|
80 |
question = dataset.settings.questions["sentiment"]
|
81 |
|
|
|
96 |
if not some_pending_records:
|
97 |
continue
|
98 |
|
99 |
+
some_pending_records = parse_pending_records(
|
100 |
+
some_pending_records, field, question, examples
|
101 |
+
)
|
102 |
dataset.records.log(some_pending_records)
|
103 |
|
104 |
except Exception:
|
|
|
110 |
records: List[rg.Record],
|
111 |
field: rg.Field,
|
112 |
question,
|
113 |
+
example_records: List[rg.Record],
|
114 |
) -> List[rg.Record]:
|
115 |
+
try:
|
116 |
+
gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller")
|
117 |
+
|
118 |
+
payload = {
|
119 |
+
"records": [record.to_dict() for record in records],
|
120 |
+
"fields": [field.serialize()],
|
121 |
+
"question": question.serialize(),
|
122 |
+
"example_records": [record.to_dict() for record in example_records],
|
123 |
+
"api_name": "/predict",
|
124 |
+
}
|
125 |
+
|
126 |
+
response = gradio_client.predict(**payload)
|
127 |
+
response = json.loads(response) if isinstance(response, str) else response
|
128 |
+
|
129 |
+
for record, suggestion in zip(records, response["results"]):
|
130 |
+
record.suggestions.add(
|
131 |
+
rg.Suggestion(
|
132 |
+
question_name=question.name,
|
133 |
+
value=suggestion["value"],
|
134 |
+
score=suggestion["score"],
|
135 |
+
agent=suggestion["agent"],
|
136 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
)
|
138 |
+
except Exception:
|
139 |
+
print(traceback.format_exc())
|
140 |
|
141 |
return records
|
142 |
|