Spaces:
Running
Running
""" | |
Main module for the WhisperKit Evaluation Dashboard. | |
This module sets up and runs the Gradio interface for the WhisperKit Evaluation Dashboard, | |
allowing users to explore and compare speech recognition model performance across different | |
devices, operating systems, and datasets. | |
""" | |
import json | |
import os | |
import re | |
from math import ceil, floor | |
import gradio as gr | |
import pandas as pd | |
from argmax_gradio_components import RangeSlider | |
from dotenv import load_dotenv | |
from huggingface_hub import login | |
# Import custom constants and utility functions | |
from constants import ( | |
BANNER_TEXT, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
COL_NAMES, | |
HEADER, | |
LANGUAGE_MAP, | |
METHODOLOGY_TEXT, | |
PERFORMANCE_TEXT, | |
QUALITY_TEXT, | |
) | |
from utils import ( | |
add_datasets_to_performance_columns, | |
add_datasets_to_quality_columns, | |
calculate_parity, | |
create_confusion_matrix_plot, | |
create_initial_performance_column_dict, | |
create_initial_quality_column_dict, | |
css, | |
fields, | |
get_os_name_and_version, | |
make_dataset_wer_clickable_link, | |
make_model_name_clickable_link, | |
make_multilingual_model_clickable_link, | |
plot_metric, | |
read_json_line_by_line, | |
) | |
# Load environment variables | |
load_dotenv() | |
# Get the Hugging Face token from the environment variable | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Use the token for login | |
login(token=HF_TOKEN, add_to_git_credential=True) | |
# Define repository and directory information | |
repo_id = "argmaxinc/whisperkit-evals-dataset" | |
directory = "xcresults/benchmark_results" | |
local_dir = "" | |
# Load benchmark data from JSON files | |
PERFORMANCE_DATA = read_json_line_by_line("dashboard_data/performance_data.json") | |
QUALITY_DATA = read_json_line_by_line("dashboard_data/quality_data.json") | |
# Convert JSON data to pandas DataFrames | |
quality_df = pd.json_normalize(QUALITY_DATA) | |
benchmark_df = pd.json_normalize(PERFORMANCE_DATA) | |
# Process timestamp data | |
benchmark_df["timestamp"] = pd.to_datetime(benchmark_df["timestamp"]).dt.tz_localize( | |
None | |
) | |
benchmark_df["timestamp"] = pd.to_datetime(benchmark_df["timestamp"]).dt.tz_localize( | |
None | |
) | |
# First create a temporary column for model length | |
sorted_quality_df = ( | |
quality_df.assign(model_len=quality_df["model"].str.len()) | |
.sort_values( | |
by=["model_len", "model", "timestamp"], | |
ascending=[True, True, False], | |
) | |
.drop(columns=["model_len"]) | |
.drop_duplicates(subset=["model"], keep="first") | |
.reset_index(drop=True) | |
) | |
sorted_performance_df = ( | |
benchmark_df.assign(model_len=benchmark_df["model"].str.len()) | |
.sort_values( | |
by=["model_len", "model", "device", "os", "timestamp"], | |
ascending=[True, True, True, True, False], | |
) | |
.drop(columns=["model_len"]) | |
.drop_duplicates(subset=["model", "device", "os"], keep="first") | |
.reset_index(drop=True) | |
) | |
# Identify dataset-specific columns | |
dataset_wer_columns = [ | |
col for col in sorted_quality_df.columns if col.startswith("dataset_wer.") | |
] | |
dataset_speed_columns = [ | |
col for col in sorted_performance_df.columns if col.startswith("dataset_speed.") | |
] | |
dataset_toks_columns = [ | |
col | |
for col in sorted_performance_df.columns | |
if col.startswith("dataset_tokens_per_second.") | |
] | |
# Extract dataset names | |
QUALITY_DATASETS = [col.split(".")[-1] for col in dataset_wer_columns] | |
PERFORMANCE_DATASETS = [col.split(".")[-1] for col in dataset_speed_columns] | |
# Prepare DataFrames for display | |
model_df = sorted_quality_df[ | |
["model", "average_wer", "qoi", "timestamp"] + dataset_wer_columns | |
] | |
performance_df = sorted_performance_df[ | |
[ | |
"model", | |
"device", | |
"os", | |
"average_wer", | |
"qoi", | |
"speed", | |
"tokens_per_second", | |
"timestamp", | |
] | |
+ dataset_speed_columns | |
+ dataset_toks_columns | |
].copy() | |
# Rename columns for clarity | |
performance_df = performance_df.rename( | |
lambda x: COL_NAMES[x] if x in COL_NAMES else x, axis="columns" | |
) | |
model_df = model_df.rename( | |
lambda x: COL_NAMES[x] if x in COL_NAMES else x, axis="columns" | |
) | |
# Process dataset-specific columns | |
for col in dataset_wer_columns: | |
dataset_name = col.split(".")[-1] | |
model_df = model_df.rename(columns={col: dataset_name}) | |
model_df[dataset_name] = model_df.apply( | |
lambda x: make_dataset_wer_clickable_link(x, dataset_name), axis=1 | |
) | |
for col in dataset_speed_columns: | |
dataset_name = col.split(".")[-1] | |
performance_df = performance_df.rename( | |
columns={ | |
col: f"{'Short-Form' if dataset_name == 'librispeech-10mins' else 'Long-Form'} Speed" | |
} | |
) | |
for col in dataset_toks_columns: | |
dataset_name = col.split(".")[-1] | |
performance_df = performance_df.rename( | |
columns={ | |
col: f"{'Short-Form' if dataset_name == 'librispeech-10mins' else 'Long-Form'} Tok/s" | |
} | |
) | |
# Calculate parity with M2 Ultra | |
m2_ultra_wer = ( | |
performance_df[performance_df["Device"] == "Apple M2 Ultra"] | |
.groupby("Model")["Average WER"] | |
.first() | |
) | |
performance_df["Parity %"] = performance_df.apply( | |
lambda row: calculate_parity(m2_ultra_wer, row), axis=1 | |
) | |
# Process model names for display | |
model_df["model_raw"] = model_df["Model"].copy() | |
performance_df["model_raw"] = performance_df["Model"].copy() | |
model_df["Model"] = model_df["Model"].apply(lambda x: make_model_name_clickable_link(x)) | |
performance_df["Model"] = performance_df["Model"].apply( | |
lambda x: make_model_name_clickable_link(x) | |
) | |
# Extract unique devices and OS versions | |
PERFORMANCE_DEVICES = performance_df["Device"].unique().tolist() | |
PERFORMANCE_OS = performance_df["OS"].apply(get_os_name_and_version).unique().tolist() | |
PERFORMANCE_OS.sort() | |
# Create initial column dictionaries and update with dataset information | |
initial_performance_column_dict = create_initial_performance_column_dict() | |
initial_quality_column_dict = create_initial_quality_column_dict() | |
performance_column_info = add_datasets_to_performance_columns( | |
initial_performance_column_dict, PERFORMANCE_DATASETS | |
) | |
quality_column_info = add_datasets_to_quality_columns( | |
initial_quality_column_dict, QUALITY_DATASETS | |
) | |
# Unpack the returned dictionaries | |
updated_performance_column_dict = performance_column_info["column_dict"] | |
updated_quality_column_dict = quality_column_info["column_dict"] | |
PerformanceAutoEvalColumn = performance_column_info["AutoEvalColumn"] | |
QualityAutoEvalColumn = quality_column_info["AutoEvalColumn"] | |
# Define column sets for different views | |
PERFORMANCE_COLS = performance_column_info["COLS"] | |
QUALITY_COLS = quality_column_info["COLS"] | |
PERFORMANCE_TYPES = performance_column_info["TYPES"] | |
QUALITY_TYPES = quality_column_info["TYPES"] | |
PERFORMANCE_ALWAYS_HERE_COLS = performance_column_info["ALWAYS_HERE_COLS"] | |
QUALITY_ALWAYS_HERE_COLS = quality_column_info["ALWAYS_HERE_COLS"] | |
PERFORMANCE_TOGGLE_COLS = performance_column_info["TOGGLE_COLS"] | |
QUALITY_TOGGLE_COLS = quality_column_info["TOGGLE_COLS"] | |
PERFORMANCE_SELECTED_COLS = performance_column_info["SELECTED_COLS"] | |
QUALITY_SELECTED_COLS = quality_column_info["SELECTED_COLS"] | |
def performance_filter( | |
df, | |
columns, | |
model_query, | |
exclude_models, | |
devices, | |
os, | |
short_speed_slider, | |
long_speed_slider, | |
short_toks_slider, | |
long_toks_slider, | |
): | |
""" | |
Filters the performance DataFrame based on specified criteria. | |
:param df: The DataFrame to be filtered. | |
:param columns: The columns to be included in the filtered DataFrame. | |
:param model_query: The query string to filter the 'Model' column. | |
:param exclude_models: Models to exclude from the results. | |
:param devices: The devices to filter the 'Device' column. | |
:param os: The list of operating systems to filter the 'OS' column. | |
:param short_speed_slider: The range of values to filter the 'Short-Form Speed' column. | |
:param long_speed_slider: The range of values to filter the 'Long-Form Speed' column. | |
:param short_toks_slider: The range of values to filter the 'Short-Form Tok/s' column. | |
:param long_toks_slider: The range of values to filter the 'Long-Form Tok/s' column. | |
:return: The filtered DataFrame. | |
""" | |
# Select columns based on input and always-present columns | |
filtered_df = df[ | |
PERFORMANCE_ALWAYS_HERE_COLS | |
+ [c for c in PERFORMANCE_COLS if c in df.columns and c in columns] | |
] | |
# Filter models based on query | |
if model_query: | |
filtered_df = filtered_df[ | |
filtered_df["Model"].str.contains( | |
"|".join(q.strip() for q in model_query.split(";")), case=False | |
) | |
] | |
# Exclude specified models | |
if exclude_models: | |
exclude_list = [m.strip() for m in exclude_models.split(";")] | |
filtered_df = filtered_df[ | |
~filtered_df["Model"].str.contains("|".join(exclude_list), case=False) | |
] | |
# Filter by devices | |
filtered_df = ( | |
filtered_df[ | |
( | |
filtered_df["Device"].str.contains( | |
"|".join(re.escape(q.strip()) for q in devices), case=False | |
) | |
) | |
] | |
if devices | |
else pd.DataFrame(columns=filtered_df.columns) | |
) | |
# Filter by operating systems | |
filtered_df = ( | |
filtered_df[ | |
( | |
filtered_df["OS"].str.contains( | |
"|".join(q.strip() for q in os), case=False | |
) | |
) | |
] | |
if os | |
else pd.DataFrame(columns=filtered_df.columns) | |
) | |
# Apply short-form and long-form speed and tokens per second filters | |
min_short_speed, max_short_speed = short_speed_slider | |
min_long_speed, max_long_speed = long_speed_slider | |
min_short_toks, max_short_toks = short_toks_slider | |
min_long_toks, max_long_toks = long_toks_slider | |
filtered_df = filtered_df[ | |
(filtered_df["Short-Form Speed"] >= min_short_speed) | |
& (filtered_df["Short-Form Speed"] <= max_short_speed) | |
& (filtered_df["Long-Form Speed"] >= min_long_speed) | |
& (filtered_df["Long-Form Speed"] <= max_long_speed) | |
& (filtered_df["Short-Form Tok/s"] >= min_short_toks) | |
& (filtered_df["Short-Form Tok/s"] <= max_short_toks) | |
& (filtered_df["Long-Form Tok/s"] >= min_long_toks) | |
& (filtered_df["Long-Form Tok/s"] <= max_long_toks) | |
] | |
return filtered_df | |
def quality_filter(df, columns, model_query, wer_slider, qoi_slider, exclude_models): | |
""" | |
Filters the quality DataFrame based on specified criteria. | |
:param df: The DataFrame to be filtered. | |
:param columns: The columns to be included in the filtered DataFrame. | |
:param model_query: The query string to filter the 'Model' column. | |
:param wer_slider: The range of values to filter the 'Average WER' column. | |
:param qoi_slider: The range of values to filter the 'QoI' column. | |
:param exclude_models: Models to exclude from the results. | |
:return: The filtered DataFrame. | |
""" | |
# Select columns based on input and always-present columns | |
filtered_df = df[ | |
QUALITY_ALWAYS_HERE_COLS | |
+ [c for c in QUALITY_COLS if c in df.columns and c in columns] | |
] | |
# Filter models based on query | |
if model_query: | |
filtered_df = filtered_df[ | |
filtered_df["Model"].str.contains( | |
"|".join(q.strip() for q in model_query.split(";")), case=False | |
) | |
] | |
# Exclude specified models | |
if exclude_models: | |
exclude_list = [m.strip() for m in exclude_models.split(";")] | |
filtered_df = filtered_df[ | |
~filtered_df["Model"].str.contains("|".join(exclude_list), case=False) | |
] | |
# Apply WER and QoI filters | |
min_wer_slider, max_wer_slider = wer_slider | |
min_qoi_slider, max_qoi_slider = qoi_slider | |
if "Average WER" in filtered_df.columns: | |
filtered_df = filtered_df[ | |
(filtered_df["Average WER"] >= min_wer_slider) | |
& (filtered_df["Average WER"] <= max_wer_slider) | |
] | |
if "QoI" in filtered_df.columns: | |
filtered_df = filtered_df[ | |
(filtered_df["QoI"] >= min_qoi_slider) | |
& (filtered_df["QoI"] <= max_qoi_slider) | |
] | |
return filtered_df | |
diff_tab = gr.TabItem("Difference Checker", elem_id="diff_checker", id=2) | |
text_diff_elems = [] | |
tabs = gr.Tabs(elem_id="tab-elems") | |
multilingual_df = pd.read_csv("dashboard_data/multilingual_results.csv") | |
multilingual_models_df = multilingual_df[["Model"]].drop_duplicates() | |
multilingual_models_buttons = [] | |
for model in multilingual_models_df["Model"]: | |
elem_id = ( | |
f"{model}".replace(" ", "_").replace('"', "").replace("'", "").replace(",", "") | |
) | |
multilingual_models_buttons.append( | |
gr.Button(value=model, elem_id=elem_id, visible=False) | |
) | |
multilingual_models_df["Model"] = multilingual_models_df["Model"].apply( | |
lambda x: make_multilingual_model_clickable_link(x) | |
) | |
with open("dashboard_data/multilingual_confusion_matrices.json", "r") as file: | |
confusion_matrix_map = dict(json.load(file)) | |
def update_multilingual_results(selected_model): | |
""" | |
Updates the multilingual results display based on the selected model. | |
This function processes the multilingual data for the chosen model, | |
calculates average WER for different scenarios (language hinted vs. predicted), | |
and prepares language-specific WER data for display. | |
:param selected_model: The name of the selected model | |
:return: A list containing updated components for the Gradio interface | |
""" | |
if selected_model is None: | |
return "# Select a model from the dropdown to view results." | |
# Filter data for the selected model | |
model_data = multilingual_df[multilingual_df["Model"] == selected_model] | |
if model_data.empty: | |
return f"# No data available for model: {selected_model}" | |
# Separate data for forced and not forced scenarios | |
forced_data = model_data[model_data["Forced Tokens"] == True] | |
not_forced_data = model_data[model_data["Forced Tokens"] == False] | |
result_text = f"# Model: {selected_model}\n\n" | |
# Prepare average WER data | |
average_wer_data = [] | |
if not forced_data.empty: | |
average_wer_data.append( | |
{ | |
"Scenario": "Language Hinted", | |
"Average WER": forced_data.iloc[0]["Average WER"], | |
} | |
) | |
if not not_forced_data.empty: | |
average_wer_data.append( | |
{ | |
"Scenario": "Language Predicted", | |
"Average WER": not_forced_data.iloc[0]["Average WER"], | |
} | |
) | |
average_wer_df = pd.DataFrame(average_wer_data) | |
average_wer_df["Average WER"] = average_wer_df["Average WER"].apply( | |
lambda x: round(x, 2) | |
) | |
# Prepare language-specific WER data | |
lang_columns = [col for col in model_data.columns if col.startswith("WER_")] | |
lang_wer_data = [] | |
for column in lang_columns: | |
lang = column.split("_")[1] | |
forced_wer = forced_data[column].iloc[0] if not forced_data.empty else None | |
not_forced_wer = ( | |
not_forced_data[column].iloc[0] if not not_forced_data.empty else None | |
) | |
if forced_wer is not None or not_forced_wer is not None: | |
lang_wer_data.append( | |
{ | |
"Language": LANGUAGE_MAP[lang], | |
"Language Hinted WER": round(forced_wer, 2) | |
if forced_wer is not None | |
else "N/A", | |
"Language Predicted WER": round(not_forced_wer, 2) | |
if not_forced_wer is not None | |
else "N/A", | |
} | |
) | |
lang_wer_df = pd.DataFrame(lang_wer_data) | |
lang_wer_df = lang_wer_df.fillna("No Data") | |
# Create confusion matrix plot for unforced scenario | |
unforced_plot = None | |
if selected_model in confusion_matrix_map: | |
if "not_forced" in confusion_matrix_map[selected_model]: | |
unforced_plot = create_confusion_matrix_plot( | |
confusion_matrix_map[selected_model]["not_forced"]["matrix"], | |
confusion_matrix_map[selected_model]["not_forced"]["labels"], | |
False, | |
) | |
# Return updated components for Gradio interface | |
return [ | |
gr.update(value=result_text), | |
gr.update(visible=True, value=average_wer_df), | |
gr.update(visible=True, value=lang_wer_df), | |
gr.update(visible=unforced_plot is not None, value=unforced_plot), | |
] | |
font = [ | |
"Zwizz Regular", # Local font | |
"IBM Plex Mono", # Monospace font | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
] | |
# Define the Gradio interface | |
with gr.Blocks(css=css, theme=gr.themes.Base(font=font)) as demo: | |
# Add header and banner to the interface | |
gr.HTML(HEADER) | |
gr.HTML(BANNER_TEXT, elem_classes="markdown-text") | |
# Create tabs for different sections of the dashboard | |
with tabs.render(): | |
# Performance Tab | |
with gr.TabItem("Performance", elem_id="benchmark", id=0): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Column(scale=6, elem_classes="filter_models_column"): | |
filter_performance_models = gr.Textbox( | |
placeholder="π Filter Model (separate multiple queries with ';')", | |
label="Filter Models", | |
) | |
with gr.Column(scale=4, elem_classes="exclude_models_column"): | |
exclude_performance_models = gr.Textbox( | |
placeholder="π Exclude (separate multiple queries with ';')", | |
label="Exclude Models", | |
) | |
with gr.Row(): | |
with gr.Accordion("See All Columns", open=False): | |
with gr.Row(): | |
with gr.Column(scale=9, elem_id="performance_columns"): | |
performance_shown_columns = gr.CheckboxGroup( | |
choices=PERFORMANCE_TOGGLE_COLS, | |
value=PERFORMANCE_SELECTED_COLS, | |
label="Toggle Columns", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Column( | |
scale=1, | |
min_width=200, | |
elem_id="performance_select_columns", | |
): | |
with gr.Row(): | |
select_all_button = gr.Button( | |
"Select All", | |
elem_id="select-all-button", | |
interactive=True, | |
) | |
deselect_all_button = gr.Button( | |
"Deselect All", | |
elem_id="deselect-all-button", | |
interactive=True, | |
) | |
def select_all_columns(): | |
return PERFORMANCE_TOGGLE_COLS | |
def deselect_all_columns(): | |
return [] | |
select_all_button.click( | |
select_all_columns, | |
inputs=[], | |
outputs=performance_shown_columns, | |
) | |
deselect_all_button.click( | |
deselect_all_columns, | |
inputs=[], | |
outputs=performance_shown_columns, | |
) | |
with gr.Row(): | |
with gr.Accordion("Filter Devices", open=False): | |
with gr.Row(): | |
with gr.Column( | |
scale=9, elem_id="filter_devices_column" | |
): | |
performance_shown_devices = gr.CheckboxGroup( | |
choices=PERFORMANCE_DEVICES, | |
value=PERFORMANCE_DEVICES, | |
label="Filter Devices", | |
interactive=True, | |
) | |
with gr.Column( | |
scale=1, | |
min_width=200, | |
elem_id="filter_select_devices", | |
): | |
with gr.Row(): | |
select_all_devices_button = gr.Button( | |
"Select All", | |
elem_id="select-all-devices-button", | |
interactive=True, | |
) | |
deselect_all_devices_button = gr.Button( | |
"Deselect All", | |
elem_id="deselect-all-devices-button", | |
interactive=True, | |
) | |
def select_all_devices(): | |
return PERFORMANCE_DEVICES | |
def deselect_all_devices(): | |
return [] | |
select_all_devices_button.click( | |
select_all_devices, | |
inputs=[], | |
outputs=performance_shown_devices, | |
) | |
deselect_all_devices_button.click( | |
deselect_all_devices, | |
inputs=[], | |
outputs=performance_shown_devices, | |
) | |
with gr.Row(): | |
performance_shown_os = gr.CheckboxGroup( | |
choices=PERFORMANCE_OS, | |
value=PERFORMANCE_OS, | |
label="Filter OS", | |
interactive=True, | |
) | |
with gr.Column(scale=1): | |
with gr.Accordion("See Performance Filters"): | |
with gr.Row(): | |
with gr.Row(): | |
min_short_speed, max_short_speed = floor( | |
min(performance_df["Short-Form Speed"]) | |
), ceil(max(performance_df["Short-Form Speed"])) | |
short_speed_slider = RangeSlider( | |
value=[min_short_speed, max_short_speed], | |
minimum=min_short_speed, | |
maximum=max_short_speed, | |
step=0.001, | |
label="Short-Form Speed", | |
) | |
with gr.Row(): | |
min_long_speed, max_long_speed = floor( | |
min(performance_df["Long-Form Speed"]) | |
), ceil(max(performance_df["Long-Form Speed"])) | |
long_speed_slider = RangeSlider( | |
value=[min_long_speed, max_long_speed], | |
minimum=min_long_speed, | |
maximum=max_long_speed, | |
step=0.001, | |
label="Long-Form Speed", | |
) | |
with gr.Row(): | |
with gr.Row(): | |
min_short_toks, max_short_toks = floor( | |
min(performance_df["Short-Form Tok/s"]) | |
), ceil(max(performance_df["Short-Form Tok/s"])) | |
short_toks_slider = RangeSlider( | |
value=[min_short_toks, max_short_toks], | |
minimum=min_short_toks, | |
maximum=max_short_toks, | |
step=0.001, | |
label="Short-Form Tok/s", | |
) | |
with gr.Row(): | |
min_long_toks, max_long_toks = floor( | |
min(performance_df["Long-Form Tok/s"]) | |
), ceil(max(performance_df["Long-Form Tok/s"])) | |
long_toks_slider = RangeSlider( | |
value=[min_long_toks, max_long_toks], | |
minimum=min_long_toks, | |
maximum=max_long_toks, | |
step=0.001, | |
label="Long-Form Tok/s", | |
) | |
with gr.Row(): | |
gr.Markdown(PERFORMANCE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
leaderboard_df = gr.components.Dataframe( | |
value=performance_df[ | |
PERFORMANCE_ALWAYS_HERE_COLS + performance_shown_columns.value | |
], | |
headers=[ | |
PERFORMANCE_ALWAYS_HERE_COLS + performance_shown_columns.value | |
], | |
datatype=[ | |
c.type | |
for c in fields(PerformanceAutoEvalColumn) | |
if c.name in PERFORMANCE_COLS | |
], | |
elem_id="leaderboard-table", | |
elem_classes="large-table", | |
interactive=False, | |
) | |
# Copy of the leaderboard dataframe to apply filters to | |
hidden_leaderboard_df = gr.components.Dataframe( | |
value=performance_df, | |
headers=PERFORMANCE_COLS, | |
datatype=[ | |
c.type | |
for c in fields(PerformanceAutoEvalColumn) | |
if c.name in PERFORMANCE_COLS | |
], | |
visible=False, | |
) | |
# Inputs for the dataframe filter function | |
performance_filter_inputs = [ | |
hidden_leaderboard_df, | |
performance_shown_columns, | |
filter_performance_models, | |
exclude_performance_models, | |
performance_shown_devices, | |
performance_shown_os, | |
short_speed_slider, | |
long_speed_slider, | |
short_toks_slider, | |
long_toks_slider, | |
] | |
filter_output = leaderboard_df | |
filter_performance_models.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
exclude_performance_models.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
performance_shown_columns.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
performance_shown_devices.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
performance_shown_os.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
short_speed_slider.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
long_speed_slider.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
short_toks_slider.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
long_toks_slider.change( | |
performance_filter, performance_filter_inputs, filter_output | |
) | |
# English Quality Tab | |
with gr.TabItem("English Quality", elem_id="timeline", id=1): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Column(scale=6, elem_classes="filter_models_column"): | |
filter_quality_models = gr.Textbox( | |
placeholder="π Filter Model (separate multiple queries with ';')", | |
label="Filter Models", | |
) | |
with gr.Column(scale=4, elem_classes="exclude_models_column"): | |
exclude_quality_models = gr.Textbox( | |
placeholder="π Exclude Model (separate multiple models with ';')", | |
label="Exclude Models", | |
) | |
with gr.Row(): | |
with gr.Accordion("See All Columns", open=False): | |
quality_shown_columns = gr.CheckboxGroup( | |
choices=QUALITY_TOGGLE_COLS, | |
value=QUALITY_SELECTED_COLS, | |
label="Toggle Columns", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Column(scale=1): | |
with gr.Accordion("See Quality Filters"): | |
with gr.Row(): | |
with gr.Row(): | |
quality_min_avg_wer, quality_max_avg_wer = ( | |
floor(min(model_df["Average WER"])), | |
ceil(max(model_df["Average WER"])) + 1, | |
) | |
wer_slider = RangeSlider( | |
value=[quality_min_avg_wer, quality_max_avg_wer], | |
minimum=quality_min_avg_wer, | |
maximum=quality_max_avg_wer, | |
label="Average WER", | |
) | |
with gr.Row(): | |
quality_min_qoi, quality_max_qoi = floor( | |
min(model_df["QoI"]) | |
), ceil(max(model_df["QoI"] + 1)) | |
qoi_slider = RangeSlider( | |
value=[quality_min_qoi, quality_max_qoi], | |
minimum=quality_min_qoi, | |
maximum=quality_max_qoi, | |
label="QoI", | |
) | |
with gr.Row(): | |
gr.Markdown(QUALITY_TEXT) | |
with gr.Row(): | |
quality_leaderboard_df = gr.components.Dataframe( | |
value=model_df[ | |
QUALITY_ALWAYS_HERE_COLS + quality_shown_columns.value | |
], | |
headers=[QUALITY_ALWAYS_HERE_COLS + quality_shown_columns.value], | |
datatype=[ | |
c.type | |
for c in fields(QualityAutoEvalColumn) | |
if c.name in QUALITY_COLS | |
], | |
elem_id="leaderboard-table", | |
elem_classes="large-table", | |
interactive=False, | |
) | |
# Copy of the leaderboard dataframe to apply filters to | |
hidden_quality_leaderboard_df = gr.components.Dataframe( | |
value=model_df, | |
headers=QUALITY_COLS, | |
datatype=[ | |
c.type | |
for c in fields(QualityAutoEvalColumn) | |
if c.name in QUALITY_COLS | |
], | |
visible=False, | |
) | |
# Inputs for the dataframe filter function | |
filter_inputs = [ | |
hidden_quality_leaderboard_df, | |
quality_shown_columns, | |
filter_quality_models, | |
wer_slider, | |
qoi_slider, | |
exclude_quality_models, | |
] | |
filter_output = quality_leaderboard_df | |
filter_quality_models.change( | |
quality_filter, filter_inputs, filter_output | |
) | |
exclude_quality_models.change( | |
quality_filter, filter_inputs, filter_output | |
) | |
quality_shown_columns.change( | |
quality_filter, filter_inputs, filter_output | |
) | |
wer_slider.change(quality_filter, filter_inputs, filter_output) | |
qoi_slider.change(quality_filter, filter_inputs, filter_output) | |
# Timeline Tab | |
with gr.TabItem("Timeline", elem_id="timeline", id=4): | |
# Create subtabs for different metrics | |
with gr.Tabs(): | |
with gr.TabItem("QoI", id=0): | |
with gr.Row(): | |
with gr.Column(scale=6): | |
filter_qoi = gr.Textbox( | |
placeholder="π Filter Model-Device-OS (separate multiple queries with ';')", | |
label="Filter", | |
) | |
with gr.Column(scale=4): | |
exclude_qoi = gr.Textbox( | |
placeholder="π Exclude Model-Device-OS (separate multiple with ';')", | |
label="Exclude", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
qoi_plot = gr.Plot(container=True) | |
demo.load( | |
lambda x, y, z: plot_metric( | |
x, | |
"qoi", | |
"QoI", | |
"QoI Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_qoi, | |
exclude_qoi, | |
], | |
qoi_plot, | |
) | |
filter_qoi.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"qoi", | |
"QoI", | |
"QoI Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_qoi, | |
exclude_qoi, | |
], | |
qoi_plot, | |
) | |
exclude_qoi.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"qoi", | |
"QoI", | |
"QoI Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_qoi, | |
exclude_qoi, | |
], | |
qoi_plot, | |
) | |
with gr.TabItem("Average WER", id=1): | |
with gr.Row(): | |
with gr.Column(scale=6): | |
filter_average_wer = gr.Textbox( | |
placeholder="π Filter Model-Device-OS (separate multiple queries with ';')", | |
label="Filter", | |
) | |
with gr.Column(scale=4): | |
exclude_average_wer = gr.Textbox( | |
placeholder="π Exclude Model-Device-OS (separate multiple with ';')", | |
label="Exclude", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
average_wer_plot = gr.Plot(container=True) | |
demo.load( | |
lambda x, y, z: plot_metric( | |
x, | |
"average_wer", | |
"Average WER", | |
"Average WER Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_average_wer, | |
exclude_average_wer, | |
], | |
average_wer_plot, | |
) | |
filter_average_wer.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"average_wer", | |
"Average WER", | |
"Average WER Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_average_wer, | |
exclude_average_wer, | |
], | |
average_wer_plot, | |
) | |
exclude_average_wer.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"average_wer", | |
"Average WER", | |
"Average WER Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_average_wer, | |
exclude_average_wer, | |
], | |
average_wer_plot, | |
) | |
with gr.TabItem("Speed", id=2): | |
with gr.Row(): | |
with gr.Column(scale=6): | |
filter_speed = gr.Textbox( | |
placeholder="π Filter Model-Device-OS (separate multiple queries with ';')", | |
label="Filter", | |
) | |
with gr.Column(scale=4): | |
exclude_speed = gr.Textbox( | |
placeholder="π Exclude Model-Device-OS (separate multiple with ';')", | |
label="Exclude", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
speed_plot = gr.Plot(container=True) | |
demo.load( | |
lambda x, y, z: plot_metric( | |
x, | |
"speed", | |
"Speed", | |
"Speed Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_speed, | |
exclude_speed, | |
], | |
speed_plot, | |
) | |
filter_speed.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"speed", | |
"Speed", | |
"Speed Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_speed, | |
exclude_speed, | |
], | |
speed_plot, | |
) | |
exclude_speed.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"speed", | |
"Speed", | |
"Speed Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_speed, | |
exclude_speed, | |
], | |
speed_plot, | |
) | |
with gr.TabItem("Tok/s", id=3): | |
with gr.Row(): | |
with gr.Column(scale=6): | |
filter_toks = gr.Textbox( | |
placeholder="π Filter Model-Device-OS (separate multiple queries with ';')", | |
label="Filter", | |
) | |
with gr.Column(scale=4): | |
exclude_toks = gr.Textbox( | |
placeholder="π Exclude Model-Device-OS (separate multiple with ';')", | |
label="Exclude", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
toks_plot = gr.Plot(container=True) | |
demo.load( | |
lambda x, y, z: plot_metric( | |
x, | |
"tokens_per_second", | |
"Tok/s", | |
"Tok/s Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_toks, | |
exclude_toks, | |
], | |
toks_plot, | |
) | |
filter_toks.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"tokens_per_second", | |
"Tok/s", | |
"Tok/s Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_toks, | |
exclude_toks, | |
], | |
toks_plot, | |
) | |
exclude_toks.change( | |
lambda x, y, z: plot_metric( | |
x, | |
"tokens_per_second", | |
"Tok/s", | |
"Tok/s Over Time for Model-Device-OS Combinations", | |
y, | |
z, | |
), | |
[ | |
gr.Dataframe(benchmark_df, visible=False), | |
filter_toks, | |
exclude_toks, | |
], | |
toks_plot, | |
) | |
# Multilingual Quality Tab | |
with gr.TabItem("Multilingual Quality", elem_id="multilingual", id=5): | |
if multilingual_df is not None: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Display table of multilingual models | |
model_table = gr.Dataframe( | |
value=multilingual_models_df, | |
headers=["Model"], | |
datatype=["html"], | |
elem_classes="left-side-table", | |
) | |
# Placeholders for confusion matrix plots | |
with gr.Row(): | |
unforced_confusion_matrix = gr.Plot(visible=False) | |
with gr.Row(): | |
forced_confusion_matrix = gr.Plot(visible=False) | |
with gr.Column(scale=1): | |
# Display area for selected model results | |
results_markdown = gr.Markdown( | |
"# Select a model from the table on the left to view results.", | |
elem_id="multilingual-results", | |
) | |
# Tables for displaying average WER and language-specific WER | |
average_wer_table = gr.Dataframe( | |
value=None, elem_id="average-wer-table", visible=False | |
) | |
language_wer_table = gr.Dataframe( | |
value=None, elem_id="general-wer-table", visible=False | |
) | |
# Set up click event to update results when a model is selected | |
for button in multilingual_models_buttons: | |
button.render() | |
button.click( | |
fn=lambda x: update_multilingual_results(x), | |
inputs=[button], | |
outputs=[ | |
results_markdown, | |
average_wer_table, | |
language_wer_table, | |
unforced_confusion_matrix, | |
], | |
) | |
else: | |
# Display message if no multilingual data is available | |
gr.Markdown("No multilingual benchmark results available.") | |
# Device Support Tab | |
with gr.TabItem("Device Support", elem_id="device_support", id=6): | |
# Load device support data from CSV | |
support_data = pd.read_csv("dashboard_data/support_data.csv") | |
support_data.set_index(support_data.columns[0], inplace=True) | |
support_data["Model"] = support_data["Model"].apply( | |
lambda x: x.replace("_", "/") | |
) | |
support_data["Model"] = support_data["Model"].apply( | |
lambda x: make_model_name_clickable_link(x) | |
) | |
support_data = ( | |
support_data.assign(model_len=support_data["Model"].str.len()) | |
.sort_values( | |
by=["model_len"], | |
ascending=[True], | |
) | |
.drop(columns=["model_len"]) | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Column(scale=6, elem_id="filter_models_column"): | |
filter_support_models = gr.Textbox( | |
placeholder="π Filter Model (separate multiple queries with ';')", | |
label="Filter Models", | |
) | |
with gr.Column(scale=4, elem_classes="exclude_models_column"): | |
exclude_support_models = gr.Textbox( | |
placeholder="π Exclude Model (separate multiple models with ';')", | |
label="Exclude Models", | |
) | |
with gr.Row(): | |
with gr.Accordion("See All Columns", open=False): | |
with gr.Row(): | |
with gr.Column(scale=9): | |
support_shown_columns = gr.CheckboxGroup( | |
choices=support_data.columns.tolist()[ | |
1: | |
], # Exclude 'Model' column | |
value=support_data.columns.tolist()[1:], | |
label="Toggle Columns", | |
elem_id="support-column-select", | |
interactive=True, | |
) | |
with gr.Column(scale=1, min_width=200): | |
with gr.Row(): | |
select_all_support_button = gr.Button( | |
"Select All", | |
elem_id="select-all-support-button", | |
interactive=True, | |
) | |
deselect_all_support_button = gr.Button( | |
"Deselect All", | |
elem_id="deselect-all-support-button", | |
interactive=True, | |
) | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
### Legend | |
- β Supported: The model is supported and tested on this device. | |
- β οΈ Failed: Either The model tests failed on this device or the Speed Factor for the test is less than 1. | |
- ? Not Tested: The model is supported on this device but no test information available. | |
- Not Supported: The model is not supported on this device as per the [WhisperKit configuration](https://huggingface.co/argmaxinc/whisperkit-coreml/blob/main/config.json). | |
""" | |
) | |
# Display device support data in a table | |
device_support_table = gr.Dataframe( | |
value=support_data, | |
headers=support_data.columns.tolist(), | |
datatype=["html" for _ in support_data.columns], | |
elem_id="device-support-table", | |
elem_classes="large-table", | |
interactive=False, | |
) | |
# Hidden dataframe to store the original data | |
hidden_support_df = gr.Dataframe(value=support_data, visible=False) | |
def filter_support_data(df, columns, model_query, exclude_models): | |
filtered_df = df.copy() | |
# Filter models based on query | |
if model_query: | |
filtered_df = filtered_df[ | |
filtered_df["Model"].str.contains( | |
"|".join(q.strip() for q in model_query.split(";")), | |
case=False, | |
regex=True, | |
) | |
] | |
# Exclude specified models | |
if exclude_models: | |
exclude_list = [ | |
re.escape(m.strip()) for m in exclude_models.split(";") | |
] | |
filtered_df = filtered_df[ | |
~filtered_df["Model"].str.contains( | |
"|".join(exclude_list), case=False, regex=True | |
) | |
] | |
# Select columns | |
selected_columns = ["Model"] + [ | |
col for col in columns if col in df.columns | |
] | |
filtered_df = filtered_df[selected_columns] | |
return filtered_df | |
def select_all_support_columns(): | |
return support_data.columns.tolist()[1:] # Exclude 'Model' column | |
def deselect_all_support_columns(): | |
return [] | |
# Connect the filter function to the input components | |
filter_inputs = [ | |
hidden_support_df, | |
support_shown_columns, | |
filter_support_models, | |
exclude_support_models, | |
] | |
filter_support_models.change( | |
filter_support_data, filter_inputs, device_support_table | |
) | |
exclude_support_models.change( | |
filter_support_data, filter_inputs, device_support_table | |
) | |
support_shown_columns.change( | |
filter_support_data, filter_inputs, device_support_table | |
) | |
# Connect select all and deselect all buttons | |
select_all_support_button.click( | |
select_all_support_columns, | |
inputs=[], | |
outputs=support_shown_columns, | |
) | |
deselect_all_support_button.click( | |
deselect_all_support_columns, | |
inputs=[], | |
outputs=support_shown_columns, | |
) | |
# Methodology Tab | |
with gr.TabItem("Methodology", elem_id="methodology", id=7): | |
gr.Markdown(METHODOLOGY_TEXT, elem_id="methodology-text") | |
# Citation section | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=7, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
# Launch the Gradio interface | |
demo.launch(debug=True, share=True, ssr_mode=False) | |