whisperkit-benchmarks / performance_generate.py
ardaatahan's picture
initial commit
1543414
raw
history blame
18.5 kB
import glob
import json
import os
import shutil
import sys
import urllib
from collections import defaultdict
from datetime import datetime
from statistics import mean
import pandas as pd
import requests
from constants import BASE_WHISPERKIT_BENCHMARK_URL
from text_normalizer import text_normalizer
from utils import compute_average_wer, dir_to_json, download_dataset
def fetch_evaluation_data(url):
"""
Fetches evaluation data from the given URL.
:param url: The URL to fetch the evaluation data from.
:returns: The evaluation data as a dictionary.
:rauses: sys.exit if the request fails
"""
response = requests.get(url)
if response.status_code == 200:
return json.loads(response.text)
else:
sys.exit(f"Failed to fetch WhisperKit evals: {response.text}")
def generate_device_map(base_dir):
"""
Generates a mapping of device identifiers to their corresponding device models.
This function iterates through all summary files in the specified base directory and its subdirectories,
extracting device identifier and device model information. It stores this information in a dictionary,
where the keys are device identifiers and the values are device models.
:param base_dir: The base directory to search for summary files.
:returns: A dictionary mapping device identifiers to device models.
"""
device_map = {}
# Find all summary files recursively
summary_files = glob.glob(f"{base_dir}/**/*summary*.json", recursive=True)
for file_path in summary_files:
try:
with open(file_path, "r") as f:
data = json.load(f)
# Extract device information and create simple mapping
if "deviceModel" in data and "deviceIdentifier" in data:
device_map[data["deviceIdentifier"]] = data["deviceModel"]
except json.JSONDecodeError:
print(f"Error reading {file_path}")
except Exception as e:
print(f"Error processing {file_path}: {e}")
# Save the device map to project root
output_path = "dashboard_data/device_map.json"
with open(output_path, "w") as f:
json.dump(device_map, f, indent=4, sort_keys=True)
return device_map
def get_device_name(device):
"""
Gets the device name from the device map if it exists.
:param device: String representing the device name.
:returns: The device name from the device map if it exists, otherwise the input device name.
"""
with open("dashboard_data/device_map.json", "r") as f:
device_map = json.load(f)
return device_map.get(device, device).replace(" ", "_")
def process_benchmark_file(file_path, dataset_dfs, results):
"""
Processes a single benchmark file and updates the results dictionary.
:param file_path: Path to the benchmark JSON file.
:param dataset_dfs: Dictionary of DataFrames containing dataset information.
:param results: Dictionary to store the processed results.
This function reads a benchmark JSON file, extracts relevant information,
and updates the results dictionary with various metrics including WER,
speed, tokens per second, and quality of inference (QoI).
"""
with open(file_path, "r") as file:
test_results = json.load(file)
if len(test_results) == 0:
return
first_test_result = test_results[0]
model = first_test_result["testInfo"]["model"]
device = first_test_result["testInfo"]["device"]
dataset_dir = first_test_result["testInfo"]["datasetDir"]
if "iPhone" in device or "iPad" in device:
version_numbers = first_test_result["staticAttributes"]["osVersion"].split(".")
if len(version_numbers) == 3 and version_numbers[-1] == "0":
version_numbers.pop()
os_info = f"""{'iOS' if 'iPhone' in device else 'iPadOS'}_{".".join(version_numbers)}"""
else:
os_info = f"macOS_{first_test_result['staticAttributes']['osVersion']}"
timestamp = first_test_result["testInfo"]["date"]
commit_hash_timestamp = file_path.split("/")[-2]
commit_timestamp, commit_hash = commit_hash_timestamp.split("_")
key = (model, device, os_info, commit_timestamp)
dataset_name = dataset_dir
for test_result in test_results:
test_info = test_result["testInfo"]
audio_file_name = test_info["audioFile"]
dataset_df = dataset_dfs[dataset_name]
wer_entry = {
"prediction": text_normalizer(test_info["prediction"]),
"reference": text_normalizer(test_info["reference"]),
}
results[key]["timestamp"] = timestamp
results[key]["average_wer"].append(wer_entry)
results[key]["dataset_wer"][dataset_name].append(wer_entry)
input_audio_seconds = test_info["timings"]["inputAudioSeconds"]
full_pipeline = test_info["timings"]["fullPipeline"]
total_decoding_loops = test_info["timings"]["totalDecodingLoops"]
results[key]["dataset_speed"][dataset_name][
"inputAudioSeconds"
] += input_audio_seconds
results[key]["dataset_speed"][dataset_name]["fullPipeline"] += full_pipeline
results[key]["speed"]["inputAudioSeconds"] += input_audio_seconds
results[key]["speed"]["fullPipeline"] += full_pipeline
results[key]["commit_hash"] = commit_hash
results[key]["commit_timestamp"] = commit_timestamp
results[key]["dataset_tokens_per_second"][dataset_name][
"totalDecodingLoops"
] += total_decoding_loops
results[key]["dataset_tokens_per_second"][dataset_name][
"fullPipeline"
] += full_pipeline
results[key]["tokens_per_second"]["totalDecodingLoops"] += total_decoding_loops
results[key]["tokens_per_second"]["fullPipeline"] += full_pipeline
audio = audio_file_name.split(".")[0]
if dataset_name == "earnings22-10mins":
audio = audio.split("-")[0]
dataset_row = dataset_df.loc[dataset_df["file"].str.contains(audio)].iloc[0]
reference_wer = dataset_row["wer"]
prediction_wer = test_info["wer"]
results[key]["qoi"].append(1 if prediction_wer <= reference_wer else 0)
return key, dataset_name
def process_summary_file(file_path, results):
"""
Processes a summary file and updates the results dictionary with device support information.
:param file_path: Path to the summary JSON file.
:param results: Dictionary to store the processed results.
This function reads a summary JSON file, extracts information about supported
and failed models for a specific device and OS combination, and updates the
results dictionary accordingly.
"""
with open(file_path, "r") as file:
summary_data = json.load(file)
device = summary_data["deviceIdentifier"]
os = f"{'iPadOS' if 'iPad' in device else summary_data['osType']} {summary_data['osVersion']}"
commit_timestamp = summary_data["commitTimestamp"]
key = (device, os)
if key in results:
existing_timestamp = results[key]["commitTimestamp"]
existing_dt = datetime.strptime(existing_timestamp, "%Y-%m-%dT%H%M%S")
new_dt = datetime.strptime(commit_timestamp, "%Y-%m-%dT%H%M%S")
if new_dt <= existing_dt:
return
else:
results[key] = {}
supported_models = set(summary_data["modelsTested"])
failed_models = set()
dataset_count = 2
for model, value in summary_data["testResults"].items():
if model not in summary_data["failureInfo"]:
dataset_count = len(value)
break
for failed_model in summary_data["failureInfo"]:
if (
failed_model in summary_data["testResults"]
and len(summary_data["testResults"][failed_model]) == dataset_count
):
continue
supported_models.discard(failed_model)
failed_models.add(failed_model)
results[key]["supportedModels"] = supported_models
results[key]["commitTimestamp"] = commit_timestamp
results[key]["failedModels"] = (failed_models, file_path)
results["modelsTested"] |= supported_models
results["devices"].add(device)
def calculate_and_save_performance_results(
performance_results, performance_output_path
):
"""
Calculates final performance metrics and saves them to a JSON file.
:param performance_results: Dictionary containing raw performance data.
:param performance_output_path: Path to save the processed performance results.
This function processes the raw performance data, calculates average metrics,
and writes the final results to a JSON file, with each entry representing
a unique combination of model, device, and OS.
"""
not_supported = []
with open(performance_output_path, "w") as performance_file:
for key, data in performance_results.items():
model, device, os_info, timestamp = key
speed = round(
data["speed"]["inputAudioSeconds"] / data["speed"]["fullPipeline"], 2
)
if speed < 1.0:
not_supported.append((model, device, os_info))
continue
performance_entry = {
"model": model.replace("_", "/"),
"device": get_device_name(device).replace("_", " "),
"os": os_info.replace("_", " "),
"timestamp": data["timestamp"],
"speed": speed,
"tokens_per_second": round(
data["tokens_per_second"]["totalDecodingLoops"]
/ data["tokens_per_second"]["fullPipeline"],
2,
),
"dataset_speed": {
dataset: round(
speed_info["inputAudioSeconds"] / speed_info["fullPipeline"], 2
)
for dataset, speed_info in data["dataset_speed"].items()
},
"dataset_tokens_per_second": {
dataset: round(
tps_info["totalDecodingLoops"] / tps_info["fullPipeline"], 2
)
for dataset, tps_info in data["dataset_tokens_per_second"].items()
},
"average_wer": compute_average_wer(data["average_wer"]),
"dataset_wer": {
dataset: compute_average_wer(wer)
for dataset, wer in data["dataset_wer"].items()
},
"qoi": round(mean(data["qoi"]), 2),
"commit_hash": data["commit_hash"],
"commit_timestamp": data["commit_timestamp"],
}
json.dump(performance_entry, performance_file)
performance_file.write("\n")
return not_supported
def calculate_and_save_support_results(
support_results, not_supported, support_output_path
):
"""
Calculates device support results and saves them to a CSV file.
:param support_results: Dictionary containing device support information.
:param support_output_path: Path to save the processed support results.
This function processes the device support data and creates a CSV file
showing which models are supported on different devices and OS versions,
using checkmarks, warning signs, quesiton marks or Not supported to
indicate support status.
"""
all_models = sorted(support_results["modelsTested"])
all_devices = sorted(set(support_results["devices"]))
df = pd.DataFrame(index=all_models, columns=["Model"] + all_devices)
for model in all_models:
row = {"Model": model}
for device in all_devices:
row[device] = ""
for key, data in support_results.items():
if key in ["modelsTested", "devices"]:
continue
(device, os) = key
supported_models = data["supportedModels"]
failed_models, file_path = data["failedModels"]
directories = file_path.split("/")
commit_file, summary_file = directories[-2], directories[-1]
url = f"{BASE_WHISPERKIT_BENCHMARK_URL}/{commit_file}/{urllib.parse.quote(summary_file)}"
if model in supported_models:
current_value = row[device]
new_value = (
f"✅ {os}"
if current_value == ""
else f"{current_value}<p>✅ {os}</p>"
)
elif model in failed_models:
current_value = row[device]
new_value = (
f"""⚠️ <a style='color: #3B82F6; text-decoration: underline; text-decoration-style: dotted;' href={url}>{os}</a>"""
if current_value == ""
else f"""{current_value}<p>⚠️ <a style='color: #3B82F6; text-decoration: underline; text-decoration-style: dotted;' href={url}>{os}</a></p>"""
)
else:
current_value = row[device]
new_value = (
f"? {os}"
if current_value == ""
else f"{current_value}<p>? {os}</p>"
)
row[device] = new_value
df.loc[model] = row
remove_unsupported_cells(df, not_supported)
cols = df.columns.tolist()
cols = ["Model"] + [
get_device_name(col).replace("_", " ") for col in cols if col != "Model"
]
df.columns = cols
df.to_csv(support_output_path, index=True)
def remove_unsupported_cells(df, not_supported):
"""
Updates the DataFrame to mark unsupported model-device combinations.
This function reads a configuration file to determine which models are supported
on which devices. It then iterates over the DataFrame and sets the value to "Not supported"
for any model-device combination that is not supported according to the configuration.
:param df: A Pandas DataFrame where the index represents models and columns represent devices.
"""
with open("dashboard_data/config.json", "r") as file:
config_data = json.load(file)
device_support = config_data["device_support"]
for info in device_support:
identifiers = set(info["identifiers"])
supported = set(info["models"]["supported"])
for model in df.index:
for device in df.columns:
if (
any(identifier in device for identifier in identifiers)
and model not in supported
):
df.at[model, device] = "Not Supported"
for model, device, os in not_supported:
df.at[model, device] = "Not Supported"
def main():
"""
Main function to orchestrate the performance data generation process.
This function performs the following steps:
1. Downloads benchmark data if requested.
2. Fetches evaluation data for various datasets.
3. Processes benchmark files and summary files.
4. Calculates and saves performance and support results.
"""
source_xcresult_repo = "argmaxinc/whisperkit-evals-dataset"
source_xcresult_subfolder = "benchmark_data/"
source_xcresult_directory = f"{source_xcresult_repo}/{source_xcresult_subfolder}"
if len(sys.argv) > 1 and sys.argv[1] == "download":
try:
shutil.rmtree(source_xcresult_repo)
except:
print("Nothing to remove.")
download_dataset(
source_xcresult_repo, source_xcresult_repo, source_xcresult_subfolder
)
datasets = {
"Earnings-22": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"LibriSpeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
"earnings22-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"librispeech-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
"earnings22-12hours": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"librispeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
}
dataset_dfs = {}
for dataset_name, url in datasets.items():
evals = fetch_evaluation_data(url)
dataset_dfs[dataset_name] = pd.json_normalize(evals["results"])
performance_results = defaultdict(
lambda: {
"average_wer": [],
"dataset_wer": defaultdict(list),
"qoi": [],
"speed": {"inputAudioSeconds": 0, "fullPipeline": 0},
"tokens_per_second": {"totalDecodingLoops": 0, "fullPipeline": 0},
"dataset_speed": defaultdict(
lambda: {"inputAudioSeconds": 0, "fullPipeline": 0}
),
"dataset_tokens_per_second": defaultdict(
lambda: {"totalDecodingLoops": 0, "fullPipeline": 0}
),
"timestamp": None,
"commit_hash": None,
"commit_timestamp": None,
}
)
support_results = {"modelsTested": set(), "devices": set()}
generate_device_map(source_xcresult_directory)
for subdir, _, files in os.walk(source_xcresult_directory):
for filename in files:
file_path = os.path.join(subdir, filename)
if not filename.endswith(".json"):
continue
elif "summary" in filename:
process_summary_file(file_path, support_results)
else:
process_benchmark_file(file_path, dataset_dfs, performance_results)
not_supported = calculate_and_save_performance_results(
performance_results, "dashboard_data/performance_data.json"
)
calculate_and_save_support_results(
support_results, not_supported, "dashboard_data/support_data.csv"
)
if __name__ == "__main__":
main()