File size: 6,289 Bytes
d2ff88f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# ---------------------------------------------------------------------------------------------------
# CLIP-DINOiser
# authors: Monika Wysoczanska, Warsaw University of Technology


from mmseg.datasets import DATASETS, CustomDataset


@DATASETS.register_module(force=True)
class COCOStuffDataset(CustomDataset):
    """COCO-Stuff dataset.

    In segmentation map annotation for COCO-Stuff, Train-IDs of the 10k version
    are from 1 to 171, where 0 is the ignore index, and Train-ID of COCO Stuff
    164k is from 0 to 170, where 255 is the ignore index. So, they are all 171
    semantic categories. ``reduce_zero_label`` is set to True and False for the
    10k and 164k versions, respectively. The ``img_suffix`` is fixed to '.jpg',
    and ``seg_map_suffix`` is fixed to '.png'.
    """
    CLASSES = (
        'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
        'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
        'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
        'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
        'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
        'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
        'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
        'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
        'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
        'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
        'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
        'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
        'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner',
        'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet',
        'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile',
        'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain',
        'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble',
        'floor-other', 'floor-stone', 'floor-tile', 'floor-wood',
        'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass',
        'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat',
        'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net',
        'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform',
        'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof',
        'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper',
        'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other',
        'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable',
        'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel',
        'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops',
        'window-blind', 'window-other', 'wood')

    PALETTE = [[0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192],
               [0, 64, 64], [0, 192, 224], [0, 192, 192], [128, 192, 64],
               [0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224],
               [0, 0, 64], [0, 160, 192], [128, 0, 96], [128, 0, 192],
               [0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192],
               [128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128],
               [64, 128, 32], [0, 160, 0], [0, 0, 0], [192, 128, 160],
               [0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0],
               [0, 128, 0], [192, 128, 32], [128, 96, 128], [0, 0, 128],
               [64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160],
               [0, 96, 128], [128, 128, 128], [64, 0, 160], [128, 224, 128],
               [128, 128, 64], [192, 0, 32], [128, 96, 0], [128, 0, 192],
               [0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160],
               [64, 96, 0], [0, 128, 192], [0, 128, 160], [192, 224, 0],
               [0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192],
               [0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160],
               [64, 32, 128], [128, 192, 192], [0, 0, 160], [192, 160, 128],
               [128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128],
               [64, 128, 96], [64, 160, 0], [0, 64, 0], [192, 128, 224],
               [64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0],
               [0, 192, 0], [192, 128, 96], [192, 96, 128], [0, 64, 128],
               [64, 0, 96], [64, 224, 128], [128, 64, 0], [192, 0, 224],
               [64, 96, 128], [128, 192, 128], [64, 0, 224], [192, 224, 128],
               [128, 192, 64], [192, 0, 96], [192, 96, 0], [128, 64, 192],
               [0, 128, 96], [0, 224, 0], [64, 64, 64], [128, 128, 224],
               [0, 96, 0], [64, 192, 192], [0, 128, 224], [128, 224, 0],
               [64, 192, 64], [128, 128, 96], [128, 32, 128], [64, 0, 192],
               [0, 64, 96], [0, 160, 128], [192, 0, 64], [128, 64, 224],
               [0, 32, 128], [192, 128, 192], [0, 64, 224], [128, 160, 128],
               [192, 128, 0], [128, 64, 32], [128, 32, 64], [192, 0, 128],
               [64, 192, 32], [0, 160, 64], [64, 0, 0], [192, 192, 160],
               [0, 32, 64], [64, 128, 128], [64, 192, 160], [128, 160, 64],
               [64, 128, 0], [192, 192, 32], [128, 96, 192], [64, 0, 128],
               [64, 64, 32], [0, 224, 192], [192, 0, 0], [192, 64, 160],
               [0, 96, 192], [192, 128, 128], [64, 64, 160], [128, 224, 192],
               [192, 128, 64], [192, 64, 32], [128, 96, 64], [192, 0, 192],
               [0, 192, 32], [64, 224, 64], [64, 0, 64], [128, 192, 160],
               [64, 96, 64], [64, 128, 192], [0, 192, 160], [192, 224, 64],
               [64, 128, 64], [128, 192, 32], [192, 32, 192], [64, 64, 192],
               [0, 64, 32], [64, 160, 192], [192, 64, 64], [128, 64, 160],
               [64, 32, 192], [192, 192, 192], [0, 64, 160], [192, 160, 192],
               [192, 192, 0], [128, 64, 96], [192, 32, 64], [192, 64, 128],
               [64, 192, 96], [64, 160, 64], [64, 64, 0]]

    def __init__(self, **kwargs):
        super(COCOStuffDataset, self).__init__(
            img_suffix='.jpg', seg_map_suffix='_labelTrainIds.png', **kwargs)