File size: 4,664 Bytes
c184c0e
d2ff88f
c184c0e
29cef8e
d2ff88f
29cef8e
 
 
 
 
 
 
 
74b0d5e
29cef8e
 
d2ff88f
 
 
 
 
 
74b0d5e
 
 
d2ff88f
 
35301df
d2ff88f
 
 
b957ec1
d2ff88f
 
 
 
 
 
 
29cef8e
 
b79f89f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b0d5e
 
 
b79f89f
29cef8e
74b0d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79f89f
 
 
 
 
 
 
 
74b0d5e
 
 
 
 
 
 
 
 
 
1ceab8e
74b0d5e
3457a2e
74b0d5e
 
 
cf8de3e
74b0d5e
 
cf8de3e
74b0d5e
 
b79f89f
 
 
 
 
 
74b0d5e
 
 
 
b79f89f
74b0d5e
 
b79f89f
 
 
 
 
 
74b0d5e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from models.builder import build_model
from visualization import mask2rgb
from segmentation.datasets import PascalVOCDataset

import os
from hydra import compose, initialize
from PIL import Image
import matplotlib.pyplot as plt
from torchvision import transforms as T
import torch.nn.functional as F
import numpy as np
from operator import itemgetter 
import torch
import random
import warnings

warnings.filterwarnings("ignore")
initialize(config_path="configs", version_base=None)

from huggingface_hub import Repository

repo = Repository(
    local_dir="clip-dinoiser",
    clone_from="ariG23498/clip-dinoiser",
    use_auth_token=os.environ.get("token")
)

check_path = 'clip-dinoiser/checkpoints/last.pt'
device = "cuda" if torch.cuda.is_available() else "cpu"

check = torch.load(check_path, map_location=device)
dinoclip_cfg = "clip_dinoiser.yaml"
cfg = compose(config_name=dinoclip_cfg)

model = build_model(cfg.model, class_names=PascalVOCDataset.CLASSES).to(device)
model.clip_backbone.decode_head.use_templates=False # switching off the imagenet templates for fast inference
model.load_state_dict(check['model_state_dict'], strict=False)
model = model.eval()

import gradio as gr

colors = [
    (0, 255, 0),
    (0, 0, 255),
    (255, 255, 0),
    (255, 0, 255),
    (0, 255, 255),
    (114, 128, 250),
    (0, 165, 255),
    (0, 128, 0),
    (144, 238, 144),
    (238, 238, 175),
    (255, 191, 0),
    (0, 128, 0),
    (226, 43, 138),
    (255, 0, 255),
    (0, 215, 255),
    (255, 0, 0),
]

color_map = {
    f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
}

def run_clip_dinoiser(input_image, text_prompts):
    image = input_image.convert("RGB")
    text_prompts = text_prompts.split(",")
    palette = colors[:len(text_prompts)]

    model.clip_backbone.decode_head.update_vocab(text_prompts)
    model.to(device)
    model.apply_found = True

    img_tens = T.PILToTensor()(image).unsqueeze(0).to(device) / 255.

    h, w = img_tens.shape[-2:]
    output = model(img_tens).cpu()
    output = F.interpolate(output, scale_factor=model.clip_backbone.backbone.patch_size, mode="bilinear",
                        align_corners=False)[..., :h, :w]
    output = output[0].argmax(dim=0)
    mask = mask2rgb(output, palette)

    # fig = plt.figure(figsize=(3, 1))
    # classes = np.unique(output).tolist()
    # plt.imshow(np.array(itemgetter(*classes)(palette)).reshape(1, -1, 3))
    # plt.xticks(np.arange(len(classes)), list(itemgetter(*classes)(text_prompts)), rotation=45)
    # plt.yticks([])

    
    # fig, ax = plt.subplots(nrows=1, ncols=2)
    # alpha=0.5
    # blend = (alpha)*np.array(image)/255. + (1-alpha) * mask/255.
    # ax[0].imshow(blend)
    # ax[1].imshow(mask)
    # ax[0].axis('off')
    # ax[1].axis('off')

    classes = np.unique(output).tolist()
    palette_array = np.array(itemgetter(*classes)(palette)).reshape(1, -1, 3)
    alpha=0.5
    blend = (alpha)*np.array(image)/255. + (1-alpha) * mask/255.

    h_text = list()
    for idx, text in enumerate(text_prompts):
        for alphabet in text:
            h_text.append((alphabet, color_map[str(idx)]))
    return blend, mask, h_text




if __name__ == "__main__":

    block = gr.Blocks().queue()
    with block:
        gr.Markdown("<h1><center>CLIP-DINOiser<h1><center>")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil")
                text_prompts = gr.Textbox(label="Enter comma-separated prompts")
                run_button = gr.Button(value="Run")

            with gr.Column():
                with gr.Row():
                    overlay_mask = gr.Image(
                        type="numpy",
                    )
                    only_mask = gr.Image(
                        type="numpy",
                    )
                h_text = gr.HighlightedText(
                    label="text",
                    combine_adjacent=False,
                    show_legend=False,
                    color_map=color_map
                )

        run_button.click(
            fn=run_clip_dinoiser,
            inputs=[input_image, text_prompts,],
            outputs=[overlay_mask, only_mask, h_text]
        )
        gr.Examples(
            [["vintage_bike.jpeg", "background, vintage bike, leather bag"]],
            inputs = [input_image, text_prompts,],
            outputs = [overlay_mask, only_mask, h_text],
            fn=run_clip_dinoiser,
            cache_examples=True,
            label='Try this example input!'
      )
    block.launch(share=False, show_api=False, show_error=True)