Spaces:
Running
Running
# From OpenMMLab https://github.com/chongzhou96/MaskCLIP | |
# Copyright (c) OpenMMLab. All rights reserved. | |
# ------------------------------------------------------------------------------ | |
import math | |
from typing import Sequence | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import build_conv_layer, build_norm_layer | |
from mmcv.runner.base_module import BaseModule | |
from mmcv.utils import to_2tuple | |
class AdaptivePadding(nn.Module): | |
"""Applies padding to input (if needed) so that input can get fully covered | |
by filter you specified. It support two modes "same" and "corner". The | |
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around | |
input. The "corner" mode would pad zero to bottom right. | |
Args: | |
kernel_size (int | tuple): Size of the kernel: | |
stride (int | tuple): Stride of the filter. Default: 1: | |
dilation (int | tuple): Spacing between kernel elements. | |
Default: 1. | |
padding (str): Support "same" and "corner", "corner" mode | |
would pad zero to bottom right, and "same" mode would | |
pad zero around input. Default: "corner". | |
Example: | |
>>> kernel_size = 16 | |
>>> stride = 16 | |
>>> dilation = 1 | |
>>> input = torch.rand(1, 1, 15, 17) | |
>>> adap_pad = AdaptivePadding( | |
>>> kernel_size=kernel_size, | |
>>> stride=stride, | |
>>> dilation=dilation, | |
>>> padding="corner") | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
>>> input = torch.rand(1, 1, 16, 17) | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
""" | |
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): | |
super(AdaptivePadding, self).__init__() | |
assert padding in ('same', 'corner') | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
self.padding = padding | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dilation = dilation | |
def get_pad_shape(self, input_shape): | |
input_h, input_w = input_shape | |
kernel_h, kernel_w = self.kernel_size | |
stride_h, stride_w = self.stride | |
output_h = math.ceil(input_h / stride_h) | |
output_w = math.ceil(input_w / stride_w) | |
pad_h = max((output_h - 1) * stride_h + | |
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) | |
pad_w = max((output_w - 1) * stride_w + | |
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) | |
return pad_h, pad_w | |
def forward(self, x): | |
pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) | |
if pad_h > 0 or pad_w > 0: | |
if self.padding == 'corner': | |
x = F.pad(x, [0, pad_w, 0, pad_h]) | |
elif self.padding == 'same': | |
x = F.pad(x, [ | |
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2 | |
]) | |
return x | |
class PatchEmbed(BaseModule): | |
"""Image to Patch Embedding. | |
We use a conv layer to implement PatchEmbed. | |
Args: | |
in_channels (int): The num of input channels. Default: 3 | |
embed_dims (int): The dimensions of embedding. Default: 768 | |
conv_type (str): The config dict for embedding | |
conv layer type selection. Default: "Conv2d". | |
kernel_size (int): The kernel_size of embedding conv. Default: 16. | |
stride (int, optional): The slide stride of embedding conv. | |
Default: None (Would be set as `kernel_size`). | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int): The dilation rate of embedding conv. Default: 1. | |
bias (bool): Bias of embed conv. Default: True. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: None. | |
input_size (int | tuple | None): The size of input, which will be | |
used to calculate the out size. Only work when `dynamic_size` | |
is False. Default: None. | |
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels=3, | |
embed_dims=768, | |
conv_type='Conv2d', | |
kernel_size=16, | |
stride=None, | |
padding='corner', | |
dilation=1, | |
bias=True, | |
norm_cfg=None, | |
input_size=None, | |
init_cfg=None): | |
super(PatchEmbed, self).__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
if stride is None: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of conv | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.projection = build_conv_layer( | |
dict(type=conv_type), | |
in_channels=in_channels, | |
out_channels=embed_dims, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, embed_dims)[1] | |
else: | |
self.norm = None | |
if input_size: | |
input_size = to_2tuple(input_size) | |
# `init_out_size` would be used outside to | |
# calculate the num_patches | |
# when `use_abs_pos_embed` outside | |
self.init_input_size = input_size | |
if self.adap_padding: | |
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) | |
input_h, input_w = input_size | |
input_h = input_h + pad_h | |
input_w = input_w + pad_w | |
input_size = (input_h, input_w) | |
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html | |
h_out = (input_size[0] + 2 * padding[0] - dilation[0] * | |
(kernel_size[0] - 1) - 1) // stride[0] + 1 | |
w_out = (input_size[1] + 2 * padding[1] - dilation[1] * | |
(kernel_size[1] - 1) - 1) // stride[1] + 1 | |
self.init_out_size = (h_out, w_out) | |
else: | |
self.init_input_size = None | |
self.init_out_size = None | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Has shape (B, C, H, W). In most case, C is 3. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, out_h * out_w, embed_dims) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(out_h, out_w). | |
""" | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
x = self.projection(x) | |
out_size = (x.shape[2], x.shape[3]) | |
x = x.flatten(2).transpose(1, 2) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x, out_size | |
class PatchMerging(BaseModule): | |
"""Merge patch feature map. | |
This layer groups feature map by kernel_size, and applies norm and linear | |
layers to the grouped feature map. Our implementation uses `nn.Unfold` to | |
merge patch, which is about 25% faster than original implementation. | |
Instead, we need to modify pretrained models for compatibility. | |
Args: | |
in_channels (int): The num of input channels. | |
out_channels (int): The num of output channels. | |
kernel_size (int | tuple, optional): the kernel size in the unfold | |
layer. Defaults to 2. | |
stride (int | tuple, optional): the stride of the sliding blocks in the | |
unfold layer. Default: None. (Would be set as `kernel_size`) | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int | tuple, optional): dilation parameter in the unfold | |
layer. Default: 1. | |
bias (bool, optional): Whether to add bias in linear layer or not. | |
Defaults: False. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: dict(type='LN'). | |
init_cfg (dict, optional): The extra config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=2, | |
stride=None, | |
padding='corner', | |
dilation=1, | |
bias=False, | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if stride: | |
stride = stride | |
else: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of unfold | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.sampler = nn.Unfold( | |
kernel_size=kernel_size, | |
dilation=dilation, | |
padding=padding, | |
stride=stride) | |
sample_dim = kernel_size[0] * kernel_size[1] * in_channels | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, sample_dim)[1] | |
else: | |
self.norm = None | |
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) | |
def forward(self, x, input_size): | |
""" | |
Args: | |
x (Tensor): Has shape (B, H*W, C_in). | |
input_size (tuple[int]): The spatial shape of x, arrange as (H, W). | |
Default: None. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(Merged_H, Merged_W). | |
""" | |
B, L, C = x.shape | |
assert isinstance(input_size, Sequence), f'Expect ' \ | |
f'input_size is ' \ | |
f'`Sequence` ' \ | |
f'but get {input_size}' | |
H, W = input_size | |
assert L == H * W, 'input feature has wrong size' | |
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W | |
# Use nn.Unfold to merge patch. About 25% faster than original method, | |
# but need to modify pretrained model for compatibility | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
H, W = x.shape[-2:] | |
x = self.sampler(x) | |
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) | |
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * | |
(self.sampler.kernel_size[0] - 1) - | |
1) // self.sampler.stride[0] + 1 | |
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * | |
(self.sampler.kernel_size[1] - 1) - | |
1) // self.sampler.stride[1] + 1 | |
output_size = (out_h, out_w) | |
x = x.transpose(1, 2) # B, H/2*W/2, 4*C | |
x = self.norm(x) if self.norm else x | |
x = self.reduction(x) | |
return x, output_size |