Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import warnings | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention | |
from mmcv.cnn.utils.weight_init import (constant_init, kaiming_init, | |
trunc_normal_) | |
from mmcv.runner import BaseModule, ModuleList, _load_checkpoint | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from torch.nn.modules.utils import _pair as to_2tuple | |
import torch.nn.functional as F | |
from mmseg.ops import resize | |
from mmseg.utils import get_root_logger | |
from models.maskclip.utils import PatchEmbed | |
class TransformerEncoderLayer(BaseModule): | |
"""Implements one encoder layer in Vision Transformer. | |
Args: | |
embed_dims (int): The feature dimension. | |
num_heads (int): Parallel attention heads. | |
feedforward_channels (int): The hidden dimension for FFNs. | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Default: 0.0. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default: 0.0. | |
drop_path_rate (float): stochastic depth rate. Default 0.0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Default: 2. | |
qkv_bias (bool): enable bias for qkv if True. Default: True | |
act_cfg (dict): The activation config for FFNs. | |
Default: dict(type='GELU'). | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN'). | |
batch_first (bool): Key, Query and Value are shape of | |
(batch, n, embed_dim) | |
or (n, batch, embed_dim). Default: True. | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
feedforward_channels, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
num_fcs=2, | |
qkv_bias=True, | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
batch_first=True): | |
super(TransformerEncoderLayer, self).__init__() | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.attn = MultiheadAttention( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
attn_drop=attn_drop_rate, | |
proj_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
batch_first=batch_first, | |
bias=qkv_bias) | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=2) | |
self.add_module(self.norm2_name, norm2) | |
self.ffn = FFN( | |
embed_dims=embed_dims, | |
feedforward_channels=feedforward_channels, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
act_cfg=act_cfg) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
return getattr(self, self.norm2_name) | |
def forward(self, x, return_qkv=False): | |
q, k, v = None, None, None | |
if return_qkv: | |
y = self.norm1(x) | |
y = F.linear(y, self.attn.attn.in_proj_weight, self.attn.attn.in_proj_bias) | |
N, L, C = y.shape | |
y = y.view(N, L, 3, C // 3).permute(2, 0, 1, 3).reshape(3 * N, L, C // 3) | |
y = F.linear(y, self.attn.attn.out_proj.weight, self.attn.attn.out_proj.bias) | |
q, k, v = y.tensor_split(3, dim=0) | |
v += x | |
v = self.ffn(self.norm2(v), identity=v) | |
x = self.attn(self.norm1(x), identity=x) | |
x = self.ffn(self.norm2(x), identity=x) | |
return x, q, k, v | |
class VisionTransformer(BaseModule): | |
"""Vision Transformer. | |
This backbone is the implementation of `An Image is Worth 16x16 Words: | |
Transformers for Image Recognition at | |
Scale <https://arxiv.org/abs/2010.11929>`_. | |
Args: | |
img_size (int | tuple): Input image size. Default: 224. | |
patch_size (int): The patch size. Default: 16. | |
in_channels (int): Number of input channels. Default: 3. | |
embed_dims (int): embedding dimension. Default: 768. | |
num_layers (int): depth of transformer. Default: 12. | |
num_heads (int): number of attention heads. Default: 12. | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim. | |
Default: 4. | |
out_indices (list | tuple | int): Output from which stages. | |
Default: -1. | |
qkv_bias (bool): enable bias for qkv if True. Default: True. | |
drop_rate (float): Probability of an element to be zeroed. | |
Default 0.0 | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default 0.0 | |
drop_path_rate (float): stochastic depth rate. Default 0.0 | |
with_cls_token (bool): Whether concatenating class token into image | |
tokens as transformer input. Default: True. | |
output_cls_token (bool): Whether output the cls_token. If set True, | |
`with_cls_token` must be True. Default: False. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN') | |
act_cfg (dict): The activation config for FFNs. | |
Default: dict(type='GELU'). | |
patch_norm (bool): Whether to add a norm in PatchEmbed Block. | |
Default: False. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Default: False. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Default: bicubic. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Default: 2. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save | |
some memory while slowing down the training speed. Default: False. | |
pretrained (str, optional): model pretrained path. Default: None. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None. | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
patch_bias=True, | |
in_channels=3, | |
embed_dims=768, | |
num_layers=12, | |
num_heads=12, | |
mlp_ratio=4, | |
out_indices=-1, | |
qkv_bias=True, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
with_cls_token=True, | |
output_cls_token=False, | |
norm_cfg=dict(type='LN'), | |
act_cfg=dict(type='GELU'), | |
patch_norm=False, | |
pre_norm=False, | |
final_norm=False, | |
return_qkv=False, | |
skip_last_attn=False, | |
interpolate_mode='bicubic', | |
num_fcs=2, | |
norm_eval=False, | |
with_cp=False, | |
pretrained=None, | |
init_cfg=None): | |
super(VisionTransformer, self).__init__(init_cfg=init_cfg) | |
if isinstance(img_size, int): | |
img_size = to_2tuple(img_size) | |
elif isinstance(img_size, tuple): | |
if len(img_size) == 1: | |
img_size = to_2tuple(img_size[0]) | |
assert len(img_size) == 2, \ | |
f'The size of image should have length 1 or 2, ' \ | |
f'but got {len(img_size)}' | |
if output_cls_token: | |
assert with_cls_token is True, f'with_cls_token must be True if' \ | |
f'set output_cls_token to True, but got {with_cls_token}' | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be set at the same time' | |
if isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is not None: | |
raise TypeError('pretrained must be a str or None') | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.interpolate_mode = interpolate_mode | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.pretrained = pretrained | |
self.patch_embed = PatchEmbed( | |
in_channels=in_channels, | |
embed_dims=embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
padding='corner', | |
bias=patch_bias, | |
norm_cfg=norm_cfg if patch_norm else None, | |
init_cfg=None, | |
) | |
num_patches = (img_size[0] // patch_size) * \ | |
(img_size[1] // patch_size) | |
self.with_cls_token = with_cls_token | |
self.output_cls_token = output_cls_token | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches + 1, embed_dims)) | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
if isinstance(out_indices, int): | |
if out_indices == -1: | |
out_indices = num_layers - 1 | |
self.out_indices = [out_indices] | |
elif isinstance(out_indices, list) or isinstance(out_indices, tuple): | |
self.out_indices = out_indices | |
else: | |
raise TypeError('out_indices must be type of int, list or tuple') | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, num_layers) | |
] # stochastic depth decay rule | |
self.layers = ModuleList() | |
for i in range(num_layers): | |
self.layers.append( | |
TransformerEncoderLayer( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
feedforward_channels=mlp_ratio * embed_dims, | |
attn_drop_rate=attn_drop_rate, | |
drop_rate=drop_rate, | |
drop_path_rate=dpr[i], | |
num_fcs=num_fcs, | |
qkv_bias=qkv_bias, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
batch_first=True)) | |
self.pre_norm = pre_norm | |
if pre_norm: | |
self.norm0_name, norm0 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=0) | |
self.add_module(self.norm0_name, norm0) | |
self.final_norm = final_norm | |
if final_norm: | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.return_qkv = [False] * num_layers | |
if isinstance(return_qkv, bool): | |
for out_i in self.out_indices: | |
self.return_qkv[out_i] = return_qkv | |
elif isinstance(return_qkv, list) or isinstance(return_qkv, tuple): | |
for i, out_i in enumerate(self.out_indices): | |
self.return_qkv[out_i] = return_qkv[i] | |
else: | |
raise TypeError('return_qkv must be type of bool, list or tuple') | |
self.skip_last_attn = skip_last_attn | |
def norm0(self): | |
return getattr(self, self.norm0_name) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def init_weights(self): | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg.get('type') == 'Pretrained'): | |
logger = get_root_logger() | |
checkpoint = _load_checkpoint( | |
self.init_cfg['checkpoint'], logger=logger, map_location='cpu') | |
if 'state_dict' in checkpoint: | |
state_dict = checkpoint['state_dict'] | |
else: | |
state_dict = checkpoint | |
if 'pos_embed' in state_dict.keys(): | |
if self.pos_embed.shape != state_dict['pos_embed'].shape: | |
logger.info(msg=f'Resize the pos_embed shape from ' | |
f'{state_dict["pos_embed"].shape} to ' | |
f'{self.pos_embed.shape}') | |
h, w = self.img_size | |
pos_size = int( | |
math.sqrt(state_dict['pos_embed'].shape[1] - 1)) | |
state_dict['pos_embed'] = self.resize_pos_embed( | |
state_dict['pos_embed'], | |
(h // self.patch_size, w // self.patch_size), | |
(pos_size, pos_size), self.interpolate_mode) | |
print(self.load_state_dict(state_dict, False)) | |
elif self.init_cfg is not None: | |
super(VisionTransformer, self).init_weights() | |
else: | |
# We only implement the 'jax_impl' initialization implemented at | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501 | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
for n, m in self.named_modules(): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if m.bias is not None: | |
if 'ffn' in n: | |
nn.init.normal_(m.bias, mean=0., std=1e-6) | |
else: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Conv2d): | |
kaiming_init(m, mode='fan_in', bias=0.) | |
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): | |
constant_init(m, val=1.0, bias=0.) | |
def _pos_embeding(self, patched_img, hw_shape, pos_embed): | |
"""Positiong embeding method. | |
Resize the pos_embed, if the input image size doesn't match | |
the training size. | |
Args: | |
patched_img (torch.Tensor): The patched image, it should be | |
shape of [B, L1, C]. | |
hw_shape (tuple): The downsampled image resolution. | |
pos_embed (torch.Tensor): The pos_embed weighs, it should be | |
shape of [B, L2, c]. | |
Return: | |
torch.Tensor: The pos encoded image feature. | |
""" | |
assert patched_img.ndim == 3 and pos_embed.ndim == 3, \ | |
'the shapes of patched_img and pos_embed must be [B, L, C]' | |
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1] | |
if x_len != pos_len: | |
if pos_len == (self.img_size[0] // self.patch_size) * ( | |
self.img_size[1] // self.patch_size) + 1: | |
pos_h = self.img_size[0] // self.patch_size | |
pos_w = self.img_size[1] // self.patch_size | |
else: | |
raise ValueError( | |
'Unexpected shape of pos_embed, got {}.'.format( | |
pos_embed.shape)) | |
pos_embed = self.resize_pos_embed(pos_embed, hw_shape, | |
(pos_h, pos_w), | |
self.interpolate_mode) | |
return self.drop_after_pos(patched_img + pos_embed) | |
def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode): | |
"""Resize pos_embed weights. | |
Resize pos_embed using bicubic interpolate method. | |
Args: | |
pos_embed (torch.Tensor): Position embedding weights. | |
input_shpae (tuple): Tuple for (downsampled input image height, | |
downsampled input image width). | |
pos_shape (tuple): The resolution of downsampled origin training | |
image. | |
mode (str): Algorithm used for upsampling: | |
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | | |
``'trilinear'``. Default: ``'nearest'`` | |
Return: | |
torch.Tensor: The resized pos_embed of shape [B, L_new, C] | |
""" | |
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' | |
pos_h, pos_w = pos_shape | |
cls_token_weight = pos_embed[:, 0] | |
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] | |
pos_embed_weight = pos_embed_weight.reshape( | |
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) | |
pos_embed_weight = resize( | |
pos_embed_weight, size=input_shpae, align_corners=False, mode=mode) | |
cls_token_weight = cls_token_weight.unsqueeze(1) | |
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) | |
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) | |
return pos_embed | |
def forward(self, inputs): | |
B = inputs.shape[0] | |
x, hw_shape = self.patch_embed(inputs) | |
# stole cls_tokens impl from Phil Wang, thanks | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self._pos_embeding(x, hw_shape, self.pos_embed) | |
if not self.with_cls_token: | |
# Remove class token for transformer encoder input | |
x = x[:, 1:] | |
if self.pre_norm: | |
x = self.norm0(x) | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x, q, k, v = layer(x, self.return_qkv[i] \ | |
or (i == len(self.layers) - 1 and self.skip_last_attn)) | |
if i == len(self.layers) - 1: | |
if self.final_norm: | |
x = self.norm1(x) | |
if self.return_qkv[i]: | |
v = self.norm1(v) | |
if self.skip_last_attn: | |
if self.with_cls_token: | |
x[:, 1:] = v[:, 1:] | |
else: | |
x = v | |
if i in self.out_indices: | |
if self.with_cls_token: | |
# Remove class token and reshape token for decoder head | |
out = x[:, 1:] | |
else: | |
out = x | |
B, _, C = out.shape | |
out = out.reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
if self.output_cls_token: | |
out = [out, x[:, 0]] | |
if self.return_qkv[i]: | |
if self.with_cls_token: | |
q = q[:, 1:] | |
k = k[:, 1:] | |
v = v[:, 1:] | |
v = v.reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
out = [out, q, k, v] | |
outs.append(out) | |
return tuple(outs) | |
def train(self, mode=True): | |
super(VisionTransformer, self).train(mode) | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.LayerNorm): | |
m.eval() |