clip-dinoiser / app.py
ariG23498's picture
ariG23498 HF staff
image resize
d6c6d2a
import os
import warnings
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from huggingface_hub import Repository
from hydra import compose, initialize
from PIL import Image
from torchvision import transforms as T
from models.builder import build_model
from segmentation.datasets import PascalVOCDataset
from visualization import mask2rgb
# Suppress warnings
warnings.filterwarnings("ignore")
# Constants
CHECKPOINT_PATH = "clip-dinoiser/checkpoints/last.pt"
CONFIG_PATH = "configs"
DINOCLIP_CONFIG = "clip_dinoiser.yaml"
COLORS = [
(0, 255, 0),
(255, 0, 0),
(0, 255, 255),
(255, 0, 255),
(255, 255, 0),
(250, 128, 114),
(255, 165, 0),
(0, 128, 0),
(144, 238, 144),
(175, 238, 238),
(0, 191, 255),
(0, 128, 0),
(138, 43, 226),
(255, 0, 255),
(255, 215, 0),
(0, 0, 255),
]
# Initialize Hydra
initialize(config_path=CONFIG_PATH, version_base=None)
# Configuration and Model Initialization
def load_model():
Repository(
local_dir="clip-dinoiser",
clone_from="ariG23498/clip-dinoiser",
use_auth_token=os.environ.get("token"),
)
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(CHECKPOINT_PATH, map_location=device)
cfg = compose(config_name=DINOCLIP_CONFIG)
model = build_model(cfg.model, class_names=PascalVOCDataset.CLASSES).to(device)
model.clip_backbone.decode_head.use_templates = False
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
return model.eval()
def run_clip_dinoiser(input_image, text_prompts, model, device, colors):
# Resize the input image
image = input_image.resize((350, 350))
image = image.convert("RGB")
text_prompts = text_prompts.split(",")
palette = colors[: len(text_prompts)]
model.clip_backbone.decode_head.update_vocab(text_prompts)
model.to(device)
img_tens = T.PILToTensor()(image).unsqueeze(0).to(device) / 255.0
h, w = img_tens.shape[-2:]
output = model(img_tens).cpu()
output = F.interpolate(
output,
scale_factor=model.clip_backbone.backbone.patch_size,
mode="bilinear",
align_corners=False,
)[..., :h, :w]
output = output[0].argmax(dim=0)
mask = mask2rgb(output, palette)
alpha = 0.5
blend = (alpha * np.array(image) / 255.0) + ((1 - alpha) * mask / 255.0)
h_text = [(text, f"{idx}") for idx, text in enumerate(text_prompts)]
return blend, mask, h_text
def create_color_map(colors):
return {
f"{color_id}": f"#{hex(color[0])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[2])[2:].zfill(2)}"
for color_id, color in enumerate(colors)
}
def setup_gradio_interface(model, device, colors, color_map):
block = gr.Blocks()
with block:
gr.Markdown("<h1><center>CLIP-DINOiser<h1><center>")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
text_prompts = gr.Textbox(label="Enter comma-separated prompts")
run_button = gr.Button(value="Run")
with gr.Column():
with gr.Row():
overlay_mask = gr.Image(type="numpy", label="Overlay Mask")
only_mask = gr.Image(type="numpy", label="Segmentation Mask")
h_text = gr.HighlightedText(
label="Labels",
combine_adjacent=False,
show_legend=False,
color_map=color_map,
)
run_button.click(
fn=lambda img, prompts: run_clip_dinoiser(
img, prompts, model, device, colors
),
inputs=[input_image, text_prompts],
outputs=[overlay_mask, only_mask, h_text],
)
gr.Examples(
examples=[["vintage_bike.jpeg", "background, vintage bike, leather bag"]],
inputs=[input_image, text_prompts],
outputs=[overlay_mask, only_mask, h_text],
fn=lambda img, prompts: run_clip_dinoiser(
img, prompts, model, device, colors
),
cache_examples=True,
label="Try this example input!",
)
return block
if __name__ == "__main__":
model = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
color_map = create_color_map(COLORS)
gradio_interface = setup_gradio_interface(model, device, COLORS, color_map)
gradio_interface.launch(share=False, show_api=False, show_error=True)