Spaces:
Sleeping
Sleeping
# --------------------------------------------------------------------------------------------------- | |
# CLIP-DINOiser | |
# authors: Monika Wysoczanska, Warsaw University of Technology | |
# ---------------------------------------------------------------------------------------------------- | |
# Modified from TCL | |
# Copyright (c) 2023 Kakao Brain. All Rights Reserved. | |
# ------------------------------------------------------------------------------ | |
from mmseg.datasets import DATASETS, CustomDataset | |
class COCOObjectDataset(CustomDataset): | |
"""COCO-Object dataset. | |
1 bg class + first 80 classes from the COCO-Stuff dataset. | |
""" | |
CLASSES = ('background', 'person', 'bicycle', 'car', 'motorcycle', 'aeroplane', 'bus', 'train', 'truck', 'boat', | |
'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', | |
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', | |
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', | |
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', | |
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', | |
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', | |
'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', | |
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush') | |
PALETTE = [[0, 0, 0], [0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192], [0, 64, 64], [0, 192, 224], | |
[0, 192, 192], [128, 192, 64], [0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224], [0, 0, 64], | |
[0, 160, 192], [128, 0, 96], [128, 0, 192], [0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192], | |
[128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128], [64, 128, 32], [0, 160, 0], [0, 0, 0], | |
[192, 128, 160], [0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0], [0, 128, 0], [192, 128, 32], | |
[128, 96, 128], [0, 0, 128], [64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160], [0, 96, 128], | |
[128, 128, 128], [64, 0, 160], [128, 224, 128], [128, 128, 64], [192, 0, 32], | |
[128, 96, 0], [128, 0, 192], [0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160], [64, 96, 0], | |
[0, 128, 192], [0, 128, 160], [192, 224, 0], [0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192], | |
[0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160], [64, 32, 128], [128, 192, 192], [0, 0, 160], | |
[192, 160, 128], [128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128], [64, 128, 96], [64, 160, 0], | |
[0, 64, 0], [192, 128, 224], [64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0]] | |
def __init__(self, **kwargs): | |
super(COCOObjectDataset, self).__init__(img_suffix='.jpg', seg_map_suffix='_instanceTrainIds.png', **kwargs) | |