Spaces:
Sleeping
Sleeping
# --------------------------------------------------------------------------------------------------- | |
# CLIP-DINOiser | |
# authors: Monika Wysoczanska, Warsaw University of Technology | |
from mmseg.datasets import DATASETS, CustomDataset | |
class COCOStuffDataset(CustomDataset): | |
"""COCO-Stuff dataset. | |
In segmentation map annotation for COCO-Stuff, Train-IDs of the 10k version | |
are from 1 to 171, where 0 is the ignore index, and Train-ID of COCO Stuff | |
164k is from 0 to 170, where 255 is the ignore index. So, they are all 171 | |
semantic categories. ``reduce_zero_label`` is set to True and False for the | |
10k and 164k versions, respectively. The ``img_suffix`` is fixed to '.jpg', | |
and ``seg_map_suffix`` is fixed to '.png'. | |
""" | |
CLASSES = ( | |
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', | |
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', | |
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', | |
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', | |
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', | |
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', | |
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', | |
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', | |
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', | |
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', | |
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', | |
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', | |
'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', | |
'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', | |
'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', | |
'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', | |
'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', | |
'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', | |
'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', | |
'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', | |
'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', | |
'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform', | |
'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof', | |
'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', | |
'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other', | |
'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', | |
'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel', | |
'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', | |
'window-blind', 'window-other', 'wood') | |
PALETTE = [[0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192], | |
[0, 64, 64], [0, 192, 224], [0, 192, 192], [128, 192, 64], | |
[0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224], | |
[0, 0, 64], [0, 160, 192], [128, 0, 96], [128, 0, 192], | |
[0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192], | |
[128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128], | |
[64, 128, 32], [0, 160, 0], [0, 0, 0], [192, 128, 160], | |
[0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0], | |
[0, 128, 0], [192, 128, 32], [128, 96, 128], [0, 0, 128], | |
[64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160], | |
[0, 96, 128], [128, 128, 128], [64, 0, 160], [128, 224, 128], | |
[128, 128, 64], [192, 0, 32], [128, 96, 0], [128, 0, 192], | |
[0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160], | |
[64, 96, 0], [0, 128, 192], [0, 128, 160], [192, 224, 0], | |
[0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192], | |
[0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160], | |
[64, 32, 128], [128, 192, 192], [0, 0, 160], [192, 160, 128], | |
[128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128], | |
[64, 128, 96], [64, 160, 0], [0, 64, 0], [192, 128, 224], | |
[64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0], | |
[0, 192, 0], [192, 128, 96], [192, 96, 128], [0, 64, 128], | |
[64, 0, 96], [64, 224, 128], [128, 64, 0], [192, 0, 224], | |
[64, 96, 128], [128, 192, 128], [64, 0, 224], [192, 224, 128], | |
[128, 192, 64], [192, 0, 96], [192, 96, 0], [128, 64, 192], | |
[0, 128, 96], [0, 224, 0], [64, 64, 64], [128, 128, 224], | |
[0, 96, 0], [64, 192, 192], [0, 128, 224], [128, 224, 0], | |
[64, 192, 64], [128, 128, 96], [128, 32, 128], [64, 0, 192], | |
[0, 64, 96], [0, 160, 128], [192, 0, 64], [128, 64, 224], | |
[0, 32, 128], [192, 128, 192], [0, 64, 224], [128, 160, 128], | |
[192, 128, 0], [128, 64, 32], [128, 32, 64], [192, 0, 128], | |
[64, 192, 32], [0, 160, 64], [64, 0, 0], [192, 192, 160], | |
[0, 32, 64], [64, 128, 128], [64, 192, 160], [128, 160, 64], | |
[64, 128, 0], [192, 192, 32], [128, 96, 192], [64, 0, 128], | |
[64, 64, 32], [0, 224, 192], [192, 0, 0], [192, 64, 160], | |
[0, 96, 192], [192, 128, 128], [64, 64, 160], [128, 224, 192], | |
[192, 128, 64], [192, 64, 32], [128, 96, 64], [192, 0, 192], | |
[0, 192, 32], [64, 224, 64], [64, 0, 64], [128, 192, 160], | |
[64, 96, 64], [64, 128, 192], [0, 192, 160], [192, 224, 64], | |
[64, 128, 64], [128, 192, 32], [192, 32, 192], [64, 64, 192], | |
[0, 64, 32], [64, 160, 192], [192, 64, 64], [128, 64, 160], | |
[64, 32, 192], [192, 192, 192], [0, 64, 160], [192, 160, 192], | |
[192, 192, 0], [128, 64, 96], [192, 32, 64], [192, 64, 128], | |
[64, 192, 96], [64, 160, 64], [64, 64, 0]] | |
def __init__(self, **kwargs): | |
super(COCOStuffDataset, self).__init__( | |
img_suffix='.jpg', seg_map_suffix='_labelTrainIds.png', **kwargs) |