ariG23498 HF staff commited on
Commit
f00aad7
·
1 Parent(s): d5766fb

refactor code

Browse files
Files changed (2) hide show
  1. app.py +3 -2
  2. app_demo1.py +0 -138
app.py CHANGED
@@ -101,8 +101,9 @@ def setup_gradio_interface(model, device, colors, color_map):
101
  run_button = gr.Button(value="Run")
102
 
103
  with gr.Column():
104
- overlay_mask = gr.Image(type="numpy", label="Overlay Mask")
105
- only_mask = gr.Image(type="numpy", label="Segmentation Mask")
 
106
  h_text = gr.HighlightedText(
107
  label="Labels",
108
  combine_adjacent=False,
 
101
  run_button = gr.Button(value="Run")
102
 
103
  with gr.Column():
104
+ with gr.Row():
105
+ overlay_mask = gr.Image(type="numpy", label="Overlay Mask")
106
+ only_mask = gr.Image(type="numpy", label="Segmentation Mask")
107
  h_text = gr.HighlightedText(
108
  label="Labels",
109
  combine_adjacent=False,
app_demo1.py DELETED
@@ -1,138 +0,0 @@
1
- # from models.builder import build_model
2
- # from visualization import mask2rgb
3
- # from segmentation.datasets import PascalVOCDataset
4
-
5
- # import os
6
- # from hydra import compose, initialize
7
- # from PIL import Image
8
- # import matplotlib.pyplot as plt
9
- # from torchvision import transforms as T
10
- # import torch.nn.functional as F
11
- # import numpy as np
12
- from operator import itemgetter
13
- # import torch
14
- # import random
15
- # import warnings
16
-
17
- warnings.filterwarnings("ignore")
18
- initialize(config_path="configs", version_base=None)
19
-
20
- # from huggingface_hub import Repository
21
-
22
- repo = Repository(
23
- local_dir="clip-dinoiser",
24
- clone_from="ariG23498/clip-dinoiser",
25
- use_auth_token=os.environ.get("token")
26
- )
27
-
28
- check_path = 'clip-dinoiser/checkpoints/last.pt'
29
- device = "cuda" if torch.cuda.is_available() else "cpu"
30
-
31
- check = torch.load(check_path, map_location=device)
32
- dinoclip_cfg = "clip_dinoiser.yaml"
33
- cfg = compose(config_name=dinoclip_cfg)
34
-
35
- model = build_model(cfg.model, class_names=PascalVOCDataset.CLASSES).to(device)
36
- model.clip_backbone.decode_head.use_templates=False # switching off the imagenet templates for fast inference
37
- model.load_state_dict(check['model_state_dict'], strict=False)
38
- model = model.eval()
39
-
40
- # import gradio as gr
41
-
42
- colors = [
43
- (0, 255, 0),
44
- (0, 0, 255),
45
- (255, 255, 0),
46
- (255, 0, 255),
47
- (0, 255, 255),
48
- (114, 128, 250),
49
- (0, 165, 255),
50
- (0, 128, 0),
51
- (144, 238, 144),
52
- (238, 238, 175),
53
- (255, 191, 0),
54
- (0, 128, 0),
55
- (226, 43, 138),
56
- (255, 0, 255),
57
- (0, 215, 255),
58
- (255, 0, 0),
59
- ]
60
-
61
- color_map = {
62
- f"{color_id}": f"#{hex(color[0])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[2])[2:].zfill(2)}" for color_id, color in enumerate(colors)
63
- }
64
-
65
- def run_clip_dinoiser(input_image, text_prompts):
66
- image = input_image.convert("RGB")
67
- text_prompts = text_prompts.split(",")
68
- palette = colors[:len(text_prompts)]
69
-
70
- model.clip_backbone.decode_head.update_vocab(text_prompts)
71
- model.to(device)
72
- model.apply_found = True
73
-
74
- img_tens = T.PILToTensor()(image).unsqueeze(0).to(device) / 255.
75
-
76
- h, w = img_tens.shape[-2:]
77
- output = model(img_tens).cpu()
78
- output = F.interpolate(output, scale_factor=model.clip_backbone.backbone.patch_size, mode="bilinear",
79
- align_corners=False)[..., :h, :w]
80
- output = output[0].argmax(dim=0)
81
- mask = mask2rgb(output, palette)
82
-
83
- classes = np.unique(output).tolist()
84
- palette_array = np.array(itemgetter(*classes)(palette)).reshape(1, -1, 3)
85
- alpha=0.5
86
- blend = (alpha)*np.array(image)/255. + (1-alpha) * mask/255.
87
-
88
- h_text = list()
89
- for idx, text in enumerate(text_prompts):
90
- h_text.append((text, f"{idx}"))
91
- return blend, mask, h_text
92
-
93
-
94
-
95
-
96
- if __name__ == "__main__":
97
-
98
- block = gr.Blocks().queue()
99
- with block:
100
- gr.Markdown("<h1><center>CLIP-DINOiser<h1><center>")
101
-
102
- with gr.Row():
103
- with gr.Column():
104
- input_image = gr.Image(type="pil", label="Input Image")
105
- text_prompts = gr.Textbox(label="Enter comma-separated prompts")
106
- run_button = gr.Button(value="Run")
107
-
108
- with gr.Column():
109
- with gr.Row():
110
- overlay_mask = gr.Image(
111
- type="numpy",
112
- label="Overlay Mask",
113
- )
114
- only_mask = gr.Image(
115
- type="numpy",
116
- label="Segmentation Mask"
117
- )
118
- h_text = gr.HighlightedText(
119
- label="Labels",
120
- combine_adjacent=False,
121
- show_legend=False,
122
- color_map=color_map
123
- )
124
-
125
- run_button.click(
126
- fn=run_clip_dinoiser,
127
- inputs=[input_image, text_prompts,],
128
- outputs=[overlay_mask, only_mask, h_text]
129
- )
130
- gr.Examples(
131
- [["vintage_bike.jpeg", "background, vintage bike, leather bag"]],
132
- inputs = [input_image, text_prompts,],
133
- outputs = [overlay_mask, only_mask, h_text],
134
- fn=run_clip_dinoiser,
135
- cache_examples=True,
136
- label='Try this example input!'
137
- )
138
- block.launch(share=False, show_api=False, show_error=True)