rag-pis / app.py
ariG23498's picture
ariG23498 HF staff
chore: fixing secrets
bbd2c0c
raw
history blame
1.89 kB
import gradio as gr
import spaces
import torch
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
dataset = load_dataset("ariG23498/pis-blogs-chunked")
embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", key="HF_TOKEN", value=os.getenv("auth"))
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", torch_dtype=torch.bfloat16, key="HF_TOKEN", value=os.getenv("auth"))
@spaces.GPU
def process_query(query):
embedding_model = embedding_model.to("cuda")
text_embeddings = embedding_model.encode(dataset["train"]["text"])
query_embedding = embedding_model.encode(query)
similarity_scores = embedding_model.similarity(query_embedding, text_embeddings)
top_indices = (-similarity_scores).argsort()[0][:5]
context = dataset["train"]["text"][top_indices[0]]
url = dataset["train"]["url"][top_indices[0]]
input_text = (
f"Based on the context provided, '{context}', how would"
f"you address the user's query regarding '{query}'? Please"
" provide a detailed and contextually relevant response."
)
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
len_text = len(input_text)
model = model.to("cuda")
with torch.inference_mode():
generated_outputs = model.generate(**input_ids, max_new_tokens=1000, do_sample=False)
generated_outputs = tokenizer.batch_decode(generated_outputs, skip_special_tokens=True)
response = generated_outputs[0][len_text:]
return url, response
demo = gr.Interface(
fn=process_query,
inputs=gr.Textbox(label="User Query"),
outputs=[gr.Textbox(label="URL"), gr.Textbox(label="Generated Response")]
)
demo.launch()