fix
Browse files
app.py
CHANGED
@@ -5,36 +5,32 @@ from datasets import load_dataset
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
@spaces.GPU
|
9 |
def process_query(query):
|
10 |
-
|
11 |
-
embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2", device="cuda:0")
|
12 |
text_embeddings = embedding_model.encode(dataset["train"]["text"])
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
14 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", torch_dtype=torch.bfloat16, device_map="auto")
|
15 |
|
16 |
-
print(f"Query: {query}")
|
17 |
-
|
18 |
query_embedding = embedding_model.encode(query)
|
19 |
-
|
20 |
similarity_scores = embedding_model.similarity(query_embedding, text_embeddings)
|
21 |
top_indices = (-similarity_scores).argsort()[0][:5]
|
22 |
|
23 |
context = dataset["train"]["text"][top_indices[0]]
|
24 |
url = dataset["train"]["url"][top_indices[0]]
|
25 |
|
26 |
-
print(f"Searching URL: {url}")
|
27 |
-
print(f"Found context: {context}")
|
28 |
-
|
29 |
input_text = (
|
30 |
f"Based on the context provided, '{context}', how would"
|
31 |
f"you address the user's query regarding '{query}'? Please"
|
32 |
" provide a detailed and contextually relevant response."
|
33 |
)
|
34 |
|
35 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda
|
36 |
len_text = len(input_text)
|
37 |
-
|
38 |
with torch.inference_mode():
|
39 |
generated_outputs = model.generate(**input_ids, max_new_tokens=1000, do_sample=False)
|
40 |
generated_outputs = tokenizer.batch_decode(generated_outputs, skip_special_tokens=True)
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
+
dataset = load_dataset("ariG23498/pis-blogs-chunked")
|
9 |
+
embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
11 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", torch_dtype=torch.bfloat16)
|
12 |
+
|
13 |
@spaces.GPU
|
14 |
def process_query(query):
|
15 |
+
embedding_model = embedding_model.to("cuda")
|
|
|
16 |
text_embeddings = embedding_model.encode(dataset["train"]["text"])
|
|
|
|
|
17 |
|
|
|
|
|
18 |
query_embedding = embedding_model.encode(query)
|
|
|
19 |
similarity_scores = embedding_model.similarity(query_embedding, text_embeddings)
|
20 |
top_indices = (-similarity_scores).argsort()[0][:5]
|
21 |
|
22 |
context = dataset["train"]["text"][top_indices[0]]
|
23 |
url = dataset["train"]["url"][top_indices[0]]
|
24 |
|
|
|
|
|
|
|
25 |
input_text = (
|
26 |
f"Based on the context provided, '{context}', how would"
|
27 |
f"you address the user's query regarding '{query}'? Please"
|
28 |
" provide a detailed and contextually relevant response."
|
29 |
)
|
30 |
|
31 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
32 |
len_text = len(input_text)
|
33 |
+
model = model.to("cuda")
|
34 |
with torch.inference_mode():
|
35 |
generated_outputs = model.generate(**input_ids, max_new_tokens=1000, do_sample=False)
|
36 |
generated_outputs = tokenizer.batch_decode(generated_outputs, skip_special_tokens=True)
|