chat / app /main.py
ariansyahdedy's picture
Add memory
7b2511b
raw
history blame
10.5 kB
from fastapi import FastAPI, Request, status
from fastapi.responses import JSONResponse
from fastapi.responses import Response
from fastapi.exceptions import HTTPException
from fastapi.background import BackgroundTasks
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.errors import RateLimitExceeded
from slowapi.util import get_remote_address
from slowapi.middleware import SlowAPIMiddleware
from typing import Dict, List
from prometheus_client import Counter, Histogram, start_http_server
from pydantic import BaseModel, ValidationError
from app.services.message import generate_reply, send_reply
import logging
import httpx
from datetime import datetime
from sentence_transformers import SentenceTransformer
from app.search.rag_pipeline import RAGSystem
from contextlib import asynccontextmanager
# from app.db.database import create_indexes, init_db
# from app.services.webhook_handler import verify_webhook
from app.handlers.message_handler import MessageHandler
from app.handlers.webhook_handler import WebhookHandler
from app.handlers.media_handler import WhatsAppMediaHandler
from app.services.cache import MessageCache
from app.services.chat_manager import ChatManager
from app.api.api_prompt import prompt_router
from app.api.api_file import file_router, load_file_with_markdown_function
from app.utils.load_env import ACCESS_TOKEN, WHATSAPP_API_URL, GEMINI_API
from fastapi.staticfiles import StaticFiles
from vidavox.core import RAG_Engine
from app.memory import AgentMemory
from app.settings import settings
from markitdown import MarkItDown
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize handlers at startup
message_handler = None
webhook_handler = None
indexed_links = ["https://sswalfa.surabaya.go.id/info/detail/izin-pengumpulan-sumbangan-bencana",
"https://sswalfa.surabaya.go.id/info/detail/izin-pemakaian-ruang-terbuka-hijau",
"https://sswalfa.surabaya.go.id/info/detail/pengganti-ipt",
"https://sswalfa.surabaya.go.id/info/detail/arahan-sistem-drainase",
"https://sswalfa.surabaya.go.id/info/detail/rangkaian-pelayanan-surat-pernyataan-belum-menikah-lagi-bagi-jandaduda"
]
async def setup_message_handler():
logger = logging.getLogger(__name__)
message_cache = MessageCache()
chat_manager = ChatManager()
media_handler = WhatsAppMediaHandler()
return MessageHandler(
message_cache=message_cache,
chat_manager=chat_manager,
media_handler=media_handler,
logger=logger
)
# async def setup_rag_system():
# embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Replace with your model if different
# rag_system = RAGSystem(embedding_model)
# return rag_system
# Initialize FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
try:
agentMemory = AgentMemory(db_url=settings.POSTGRES_DB_URL)
memory = await agentMemory.initialize()
# await init_db()
file_paths = ['./docs/coretax_telegram.csv']
logger.info("Connected to the MongoDB database!")
# rag_system = await setup_rag_system()
engine= RAG_Engine(embedding_model='Snowflake/snowflake-arctic-embed-l-v2.0').from_paths(file_paths, load_csv_as_pandas_dataframe=True, text_col='answer', metadata_cols=['question','images_path'])
app.state.rag_system = engine
app.state.agentMemory = agentMemory
app.state.memory = memory
global message_handler, webhook_handler
message_handler = await setup_message_handler()
webhook_handler = WebhookHandler(message_handler)
# collections = app.database.list_collection_names()
# print(f"Collections in {db_name}: {collections}")
# await load_file_with_markdown_function(rag_system=rag_system, filepaths=indexed_links)
yield
except Exception as e:
logger.error(e)
# Initialize Limiter and Prometheus Metrics
limiter = Limiter(key_func=get_remote_address)
app = FastAPI(lifespan=lifespan)
# Mount the 'images' directory so its files are available under the /images URL path
app.mount("/images", StaticFiles(directory="images"), name="images")
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
# Add SlowAPI Middleware
app.add_middleware(SlowAPIMiddleware)
# app.include_router(users.router, prefix="/users", tags=["Users"])
app.include_router(prompt_router, prefix="/prompts", tags=["Prompts"])
app.include_router(file_router, prefix="/file_load", tags=["File Load"])
# Prometheus metrics
webhook_requests = Counter('webhook_requests_total', 'Total webhook requests')
webhook_processing_time = Histogram('webhook_processing_seconds', 'Time spent processing webhook')
def get_image_links(image_paths: List[str]) -> List[str]:
links = []
for path in image_paths:
# Remove the surrounding brackets and any extra whitespace
cleaned = path.strip("[]").strip()
# Split by comma to get individual image paths
parts = [part.strip() for part in cleaned.split(",") if part.strip()]
for part in parts:
# Assuming the part starts with "images/", extract the filename
if part.startswith("images/"):
filename = part.split("/", 1)[1]
links.append(f"/images/{filename}")
else:
links.append(part) # Fallback if the format is unexpected
return links
# @app.get("/image-links")
# async def image_links_endpoint():
# image_paths = ['[images/photo_3.jpg, images/photo_16.jpg]']
# links = get_image_links(image_paths)
# return {"links": links}
# Start Prometheus metrics server on port 8002
# start_http_server(8002)
# Register webhook routes
# app.post("/webhook")(webhook)
# Define Pydantic schema for request validation
class WebhookPayload(BaseModel):
entry: List[Dict]
@app.post("/webhook")
# @limiter.limit("20/minute")
async def webhook(request: Request, background_tasks: BackgroundTasks):
try:
payload = await request.json()
rag_system = request.app.state.rag_system
agentMemory = request.app.state.agentMemory
memory = request.app.state.memory
# validated_payload = WebhookPayload(**payload) # Validate payload
# logger.info(f"Validated Payload: {validated_payload}")
# Process the webhook payload here
# For example:
# results = process_webhook_entries(validated_payload.entry)
# e.g., whatsapp_token, verify_token, llm_api_key, llm_model
whatsapp_token = request.query_params.get("whatsapp_token")
whatsapp_url = request.query_params.get("whatsapp_url")
gemini_api = request.query_params.get("gemini_api")
llm_model = request.query_params.get("cx_code")
# Return HTTP 200 immediately
# response = JSONResponse(
# content={"status": "received"},
# status_code=200
# )
print(f"payload: {payload}")
# response = await webhook_handler.process_webhook(
# payload=payload,
# whatsapp_token=ACCESS_TOKEN,
# whatsapp_url=WHATSAPP_API_URL,
# gemini_api=GEMINI_API,
# rag_system=rag_system,
# )
# Add the processing to background tasks
background_tasks.add_task(
webhook_handler.process_webhook,
payload=payload,
whatsapp_token=ACCESS_TOKEN,
whatsapp_url=WHATSAPP_API_URL,
gemini_api=GEMINI_API,
rag_system=rag_system,
agentMemory = agentMemory,
memory = memory
)
# Return HTTP 200 immediately
return JSONResponse(
content={"status": "received"},
status_code=status.HTTP_200_OK
)
# return JSONResponse(
# content=response.__dict__,
# status_code=status.HTTP_200_OK
# )
except ValidationError as ve:
logger.error(f"Validation error: {ve}")
return JSONResponse(
content={"status": "error", "detail": ve.errors()},
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY
)
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
return JSONResponse(
content={"status": "error", "detail": str(e)},
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR
)
@app.get("/webhook")
async def verify_webhook(request: Request):
mode = request.query_params.get('hub.mode')
token = request.query_params.get('hub.verify_token')
challenge = request.query_params.get('hub.challenge')
if mode == 'subscribe' and token == 'test':
return Response(content=challenge, media_type="text/plain")
else:
raise HTTPException(status_code=403, detail="Verification failed")
@app.post("/load_file")
async def load_file_with_markitdown(file_path:str, llm_client:str=None, model:str=None):
if llm_client and model:
markitdown = MarkItDown(llm_client, model)
documents = markitdown.convert(file_path)
else:
markitdown = MarkItDown()
documents = markitdown.convert(file_path)
print(f"documents: {documents}")
return documents
# Add a route for Prometheus metrics (optional, if not using a separate Prometheus server)
@app.get("/metrics")
async def metrics():
from prometheus_client import generate_latest
return Response(content=generate_latest(), media_type="text/plain")
# In-memory cache with timestamp cleanup
# class MessageCache:
# def __init__(self, max_age_hours: int = 24):
# self.messages: Dict[str, float] = {}
# self.max_age_seconds = max_age_hours * 3600
# def add(self, message_id: str) -> None:
# self.cleanup()
# self.messages[message_id] = time.time()
# def exists(self, message_id: str) -> bool:
# self.cleanup()
# return message_id in self.messages
# def cleanup(self) -> None:
# current_time = time.time()
# self.messages = {
# msg_id: timestamp
# for msg_id, timestamp in self.messages.items()
# if current_time - timestamp < self.max_age_seconds
# }
# message_cache = MessageCache()
# user_chats = {}