Spaces:
Runtime error
Runtime error
File size: 14,988 Bytes
1981ec5 d987e6a 1981ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
#------------------------------------------------------------------------------ Importing necessary libraries and loading those variables
import streamlit as st
from streamlit_lottie import st_lottie, st_lottie_spinner
import os
from pathlib import Path
from dotenv import load_dotenv
load_dotenv()
st.set_page_config(layout="wide",
page_title="RAG With Llama 3",
page_icon="Lottie Animations/LlamaIcon.jpeg")
#------------------------------------------------------------------------------ Importing Backend Functions from _helper_functions py file
from _helper_functions import loadLottieFile
from _helper_functions import initialRampUp
from _helper_functions import navigationBar
from _helper_functions import removedOrAdded
from _helper_functions import buildVectorDatabase
from _helper_functions import RetrievalChainGenerator
from _helper_functions import loadItOnce
#------------------------------------------------------------------------------ Importing Frontend Functions from _helper_functions py file
from _helper_functions import display_main_title
from _helper_functions import display_alert_note
from _helper_functions import display_attention_text
from _helper_functions import display_custom_arrow
from _helper_functions import display_heading_box
from _helper_functions import display_error_message
from _helper_functions import display_small_text
from _helper_functions import display_response_message
from _helper_functions import display_question_box
from _helper_functions import display_allCitations
#------------------------------------------------------------------------------ Loading all lottie animations to showcase progress
cwd = Path.cwd()
filePath = cwd / "Lottie Animations"
llama3 = loadLottieFile(filePath / "llama3.json")
finetuning = loadLottieFile(filePath / "finetuning.json")
forecasting = loadLottieFile(filePath / "forecasting.json")
buildingDatabase = loadLottieFile(filePath / "buildingDatabase.json")
fancyload = loadLottieFile(filePath / "fancyloading.json")
citations = loadLottieFile(filePath / "citations.json")
vdbList = loadLottieFile(filePath / "knowledgeBase1.json")
#------------------------------------------------------------------------------ Declaring Session variables for the app life
if 'initialRampUp' not in st.session_state:
st.session_state.initialRampUp = True
#------------------------------------------------------------------------------ Intro Title
display_main_title("Let's Chat With Llama 3!!!", st)
#------------------------------------------------------------------------------ Navigation Bar
selected_option = navigationBar()
#------------------------------------------------------------------------------ Divider
st.divider()
#------------------------------------------------------------------------------ First Page: Retrieval Augmented Generation
if selected_option == "Retrieval Augmented Generation":
#------------------------------------------------------------------------------ And create a fresh one on Refresh
if st.session_state.initialRampUp:
initialRampUp(llamaAnimation=llama3)
st.session_state.initialRampUp = False
#------------------------------------------------------------------------------ MAIN CONTAINER
with st.container():
leftCol, upld, rightCol = st.columns((3,4,3))
#------------------------------------------------------------------------------ Heading in the right column of Parent Container
display_heading_box(message = "Knowledge Base Contents", container= rightCol)
loadItOnce(container=rightCol, animation=vdbList, height=200, quality='low')
#------------------------------------------------------------------------------ Heading in the left column of Parent Container
display_heading_box(message = "Citations for responses", container= leftCol)
loadItOnce(container=leftCol, animation=citations, height=200, quality='low')
upld.markdown("#")
upld.markdown("#")
#------------------------------------------------------------------------------ Alert Message in the Middle Column of parent container
display_alert_note(message="Note: \
Multiple Files with same names will be considered unique while constructing Vector Embeddings \
It takes a little bit of time for Vector Embeddings to be built, BE PATIENT!", container= upld)
upld.markdown("#")
upld.markdown("#")
#------------------------------------------------------------------------------ Build Message in the Middle Column of parent container
display_attention_text(text="Build your Knowledge Base (Vector DB)!", container=upld)
with upld.container():
#------------------------------------------------------------------------------ Divide the middle parent container into yet 3 more columns (Child Container 1)
upldLeft, upldcenter, upldRight = st.columns((1,5,1))
#------------------------------------------------------------------------------ Displaying right arrow on left column of child container 1
upldLeft.markdown("###")
upldLeft.markdown("###")
display_custom_arrow(direction="right", container=upldLeft)
#------------------------------------------------------------------------------ Upload option in the middle column of child container 1
uploadedFiles = upldcenter.file_uploader(label= "Upload or Add Documents",
type=['pdf', 'txt'],
accept_multiple_files=True,
key="fileUpload"
)
#------------------------------------------------------------------------------ Displaying left arrow on right child container 1
upldRight.markdown("###")
upldRight.markdown("###")
display_custom_arrow(direction="left", container=upldRight)
#------------------------------------------------------------------------------ Query Inputs for Wikipedia
queryInputs = upldcenter.text_input(label="Type keywords to enhance augmented search & generation! Separate each keyword with ';'",
placeholder="Domain Information will be scrapped from wikipedia based on key words you enter",
)
#------------------------------------------------------------------------------ Removed any files that were removed from upload options
# removedOrAdded() returns a list of files that have been removed from Upload Component
rem = removedOrAdded(uploadedFiles)
st.session_state.filesUploadedRecords = uploadedFiles
# If there is a file that has been removed, delete its pertaining content from Vector Database and from state variable 'vdbBuilt' as well
if len(rem) > 0:
fileName = st.session_state.vdbBuilt.pop(list(rem.keys())[0], None)
if fileName is not None:
# addOrRemove=False indicates you want to delete the file or query passed
# You can pass file and query both at the same time
# You can pass file as str to delete but keep query as list
# You can pass query as list to delete but keep files as None
buildVectorDatabase(files=str(fileName), addOrRemove=False, query= [])
with upld.container():
#------------------------------------------------------------------------------ Divide the middle parent container into yet 3 more columns (Child Container 2)
_, crtOrAd, _ = st.columns((2,2,2))
#------------------------------------------------------------------------------ Button to create Vector Databases in center Child Container 2
createOrAdd = crtOrAd.button("Create/Add to the knowledge base")
#------------------------------------------------------------------------------ If Button to create clicked, execute creation of Vector Databases
if createOrAdd:
with st_lottie_spinner(buildingDatabase , height=700):
fileNames = []
wikiQueries = []
# Check if there are any keywords that user entered
if queryInputs:
# If keywords entered, iterate through those and check if there is already a Vector Database pertaining to those Key words
# If not, create a new entry in state variable 'vdbBuilt' with key as keyword and value as None for now
# Value is the sources from metadat that will be entered later when its loaded from wikipedia
for w in queryInputs.split(';'):
if 'Keyword ; ' + w.strip() not in st.session_state.vdbBuilt.keys() and len(w.strip()) > 0:
st.session_state.vdbBuilt['Keyword ; ' + w.strip()] = None
wikiQueries.append(w.strip())
# See if there any new files that have been uploaded
# If there are:
# Combine its name and upload id to create unique name for the file
# Append it fileNames list
# Also, add in state variable 'vdbBuilt', file_id as key and combined file name as value
for file in uploadedFiles:
if file.file_id not in st.session_state.vdbBuilt.keys():
fileName = "Dump/" + file.file_id + "---" + file.name
with open(fileName, "wb") as f:
f.write(file.getvalue())
fileNames.append(fileName)
st.session_state.vdbBuilt[file.file_id] = fileName
# If there are any new files or new Queries for which vectorDatabases do not exists already, build it
if len(fileNames) > 0 or len(wikiQueries) > 0:
buildVectorDatabase(files= fileNames, addOrRemove=True, query = wikiQueries)
# Otherwise prompt the user, there's nothing new on which we can build
else:
#------------------------------------------------------------------------------ Display Error Message if there are no files/new files to create vector databases
display_error_message(message= "You have no new files or Keywords to create/add vector databases!", container=upld)
#------------------------------------------------------------------------------ Choice to remove certain Keywords based Knowledge base!
keyWordOptions = [key.split(';')[-1].strip() for key, _ in st.session_state.vdbBuilt.items() if key.startswith("Keyword ; ")]
optionsMessage = "You can cross off certain keywords from below if you'd prefer to remove contents relevant to your entered keywords, be removed from knowledge base" if len(keyWordOptions)>0 \
else "Your Knowledge Base does not have any keywords based contents scrapped from internet"
upldcenter.multiselect(
label= optionsMessage,
options=keyWordOptions,
default=keyWordOptions,
key='keywordsDBOptions')
popKeys = None
for key, value in st.session_state.vdbBuilt.items():
val = key.split(";")[-1].strip() if key.startswith('Keyword ; ') else None
if val is not None and val not in st.session_state.keywordsDBOptions:
popKeys = key
break
if popKeys:
buildVectorDatabase(files=None, addOrRemove=False, query=st.session_state.vdbBuilt[popKeys])
_ = st.session_state.vdbBuilt.pop(popKeys, None)
st.rerun()
#------------------------------------------------------------------------------ Display List of Files for Vector Databases available in right column of Parent Container
for key, value in st.session_state.vdbBuilt.items():
val = key.split(";")[-1].strip() if key.startswith('Keyword ; ') else value.split("---")[-1].strip()
display_small_text(val, rightCol)
with upld.container():
st.markdown("###")
st.divider()
st.markdown("###")
_, c1,c2, _ = st.columns((2,1,2,2))
loadItOnce(container=c1, animation=llama3, height=150, quality='low')
display_question_box(c2)
#------------------------------------------------------------------------------ Display Chat Input in center column of Parent Container if Vector Databases are available
if len(st.session_state.vdbBuilt) == 0:
st.chat_input(placeholder="Type your query here once you have built vector databases!",
disabled=True)
else:
query = st.chat_input(placeholder="Type your query here once you have built vector databases!",
disabled=False)
generatorLlama3_8b = RetrievalChainGenerator(model_name=os.environ['LLAMA3MODEL8B'], vectorStore=st.session_state.vectorDatabase)
if query:
with st.container():
with st_lottie_spinner(fancyload, height=400):
response = generatorLlama3_8b.chain.invoke({"input": query})
#------------------------------------------------------------------------------ Display response from AI in center column of Parent Container
display_response_message(response['answer'], upld)
#------------------------------------------------------------------------------ Display citations of responses from AI in left column of Parent Container
display_allCitations(response, leftCol)
#------------------------------------------------------------------------------ Second Page: Fine Tuning
elif selected_option == "Fine Tuning LLMs (Coming Soon)":
st_lottie(finetuning, quality='medium', height=700)
#------------------------------------------------------------------------------ Third Page: Forecasting
elif selected_option == "Forecasting LLMs (Coming Soon)":
st_lottie(forecasting, quality='high', height=700)
else:
pass
|