Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
-
import transformers
|
3 |
from transformers import pipeline
|
4 |
-
import PIL
|
5 |
from PIL import Image
|
6 |
import requests
|
7 |
-
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
8 |
|
|
|
9 |
pipe = pipeline("summarization", model="google/pegasus-xsum")
|
10 |
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
|
11 |
imgpipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
|
12 |
emopipe = pipeline("text-classification", model="michellejieli/emotion_text_classifier")
|
|
|
13 |
|
14 |
st.title("NLP APP")
|
15 |
option = st.sidebar.selectbox(
|
16 |
"Choose a task",
|
17 |
-
("Summarization", "Age Detection", "Emotion Detection", "Image Classification")
|
18 |
)
|
|
|
19 |
if option == "Summarization":
|
20 |
st.title("Text Summarization")
|
21 |
text = st.text_area("Enter text to summarize")
|
@@ -26,16 +26,12 @@ if option == "Summarization":
|
|
26 |
st.write("Please enter text to summarize.")
|
27 |
elif option == "Age Detection":
|
28 |
st.title("Welcome to age detection")
|
29 |
-
|
30 |
-
uploaded_files = st.file_uploader("Choose a image file",type="jpg")
|
31 |
-
|
32 |
if uploaded_files is not None:
|
33 |
-
|
34 |
-
|
35 |
-
st.write("Detected age is ",agepipe(Image)[0]["label"])
|
36 |
elif option == "Image Classification":
|
37 |
st.title("Welcome to object detection")
|
38 |
-
|
39 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
40 |
text = st.text_area("Enter possible class names (comma-separated)")
|
41 |
if st.button("Submit"):
|
@@ -50,26 +46,34 @@ elif option == "Image Classification":
|
|
50 |
st.write("Please upload an image file and enter class names.")
|
51 |
elif option == "Emotion Detection":
|
52 |
st.title("Detect your emotion")
|
53 |
-
text=st.text_area("Enter your text")
|
54 |
if st.button("Submit"):
|
55 |
if text:
|
56 |
-
emotion=emopipe(text)[0]["label"]
|
57 |
if emotion == "sadness":
|
58 |
-
|
59 |
elif emotion == "joy":
|
60 |
-
|
61 |
elif emotion == "fear":
|
62 |
-
|
63 |
elif emotion == "anger":
|
64 |
-
|
65 |
elif emotion == "neutral":
|
66 |
-
|
67 |
elif emotion == "disgust":
|
68 |
-
|
69 |
elif emotion == "surprise":
|
70 |
-
|
71 |
else:
|
72 |
st.write("Please enter text.")
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
-
st.title("None")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import pipeline
|
|
|
3 |
from PIL import Image
|
4 |
import requests
|
|
|
5 |
|
6 |
+
# Define pipelines
|
7 |
pipe = pipeline("summarization", model="google/pegasus-xsum")
|
8 |
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
|
9 |
imgpipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
|
10 |
emopipe = pipeline("text-classification", model="michellejieli/emotion_text_classifier")
|
11 |
+
transpipe = pipeline("translation_en_to_fr")
|
12 |
|
13 |
st.title("NLP APP")
|
14 |
option = st.sidebar.selectbox(
|
15 |
"Choose a task",
|
16 |
+
("Summarization", "Age Detection", "Emotion Detection", "Image Classification", "Translation")
|
17 |
)
|
18 |
+
|
19 |
if option == "Summarization":
|
20 |
st.title("Text Summarization")
|
21 |
text = st.text_area("Enter text to summarize")
|
|
|
26 |
st.write("Please enter text to summarize.")
|
27 |
elif option == "Age Detection":
|
28 |
st.title("Welcome to age detection")
|
29 |
+
uploaded_files = st.file_uploader("Choose an image file", type="jpg")
|
|
|
|
|
30 |
if uploaded_files is not None:
|
31 |
+
image = Image.open(uploaded_files)
|
32 |
+
st.write("Detected age is ", agepipe(image)[0]["label"])
|
|
|
33 |
elif option == "Image Classification":
|
34 |
st.title("Welcome to object detection")
|
|
|
35 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
36 |
text = st.text_area("Enter possible class names (comma-separated)")
|
37 |
if st.button("Submit"):
|
|
|
46 |
st.write("Please upload an image file and enter class names.")
|
47 |
elif option == "Emotion Detection":
|
48 |
st.title("Detect your emotion")
|
49 |
+
text = st.text_area("Enter your text")
|
50 |
if st.button("Submit"):
|
51 |
if text:
|
52 |
+
emotion = emopipe(text)[0]["label"]
|
53 |
if emotion == "sadness":
|
54 |
+
st.write("Emotion : ", emotion, "π’")
|
55 |
elif emotion == "joy":
|
56 |
+
st.write("Emotion : ", emotion, "π")
|
57 |
elif emotion == "fear":
|
58 |
+
st.write("Emotion : ", emotion, "π¨")
|
59 |
elif emotion == "anger":
|
60 |
+
st.write("Emotion : ", emotion, "π‘")
|
61 |
elif emotion == "neutral":
|
62 |
+
st.write("Emotion : ", emotion, "π")
|
63 |
elif emotion == "disgust":
|
64 |
+
st.write("Emotion : ", emotion, "π€’")
|
65 |
elif emotion == "surprise":
|
66 |
+
st.write("Emotion : ", emotion, "π²")
|
67 |
else:
|
68 |
st.write("Please enter text.")
|
69 |
+
elif option == "Translation":
|
70 |
+
st.title("Text Translation")
|
71 |
+
text = st.text_area("Enter text to translate from English to French")
|
72 |
+
if st.button("Translate"):
|
73 |
+
if text:
|
74 |
+
translation = transpipe(text)[0]["translation_text"]
|
75 |
+
st.write("Translation:", translation)
|
76 |
+
else:
|
77 |
+
st.write("Please enter text to translate.")
|
78 |
else:
|
79 |
+
st.title("None")
|