Spaces:
Sleeping
Sleeping
File size: 31,060 Bytes
39406f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import pandas as pd
from IPython.display import clear_output
import torch
from transformers import EsmForSequenceClassification, AdamW, AutoTokenizer
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn.preprocessing import LabelEncoder
from tqdm import tqdm
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pickle
import torch.nn.functional as F
import gradio as gr
import io
from PIL import Image
import Bio
from Bio import SeqIO
import zipfile
import os
# Load the model from the file
with open('family_labels.pkl', 'rb') as filefam:
yfam = pickle.load(filefam)
tokenizerfam = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D") #facebook/esm2_t33_650M_UR50D
label_encoderfam = LabelEncoder()
encoded_labelsfam = label_encoderfam.fit_transform(yfam)
labelsfam = torch.tensor(encoded_labelsfam)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
modelfam = EsmForSequenceClassification.from_pretrained("facebook/esm2_t33_650M_UR50D", num_labels=len(set(labelsfam.tolist())))
modelfam = modelfam.to('cpu')
modelfam.load_state_dict(torch.load("/home/aarya/Documents/paper3/model_650M.pth"))
modelfam.eval()
x_testfam = ["""MAEVLRTLAGKPKCHALRPMILFLIMLVLVLFGYGVLSPRSLMPGSLERGFCMAVREPDH
LQRVSLPRMVYPQPKVLTPCRKDVLVVTPWLAPIVWEGTFNIDILNEQFRLQNTTIGLTV
FAIKKYVAFLKLFLETAEKHFMVGHRVHYYVFTDQPAAVPRVTLGTGRQLSVLEVRAYKR
WQDVSMRRMEMISDFCERRFLSEVDYLVCVDVDMEFRDHVGVEILTPLFGTLHPGFYGSS
REAFTYERRPQSQAYIPKDEGDFYYLGGFFGGSVQEVQRLTRACHQAMMVDQANGIEAVW
HDESHLNKYLLRHKPTKVLSPEYLWDQQLLGWPAVLRKLRFTAVPKNHQAVRNP
"""]
encoded_inputfam = tokenizerfam(x_testfam, padding=True, truncation=True, max_length=512, return_tensors="pt")
input_idsfam = encoded_inputfam["input_ids"]
attention_maskfam = encoded_inputfam["attention_mask"]
with torch.no_grad():
outputfam = modelfam(input_idsfam, attention_mask=attention_maskfam)
logitsfam = outputfam.logits
probabilitiesfam = F.softmax(logitsfam, dim=1)
_, predicted_labelsfam = torch.max(logitsfam, dim=1)
probabilitiesfam[0]
decoded_labelsfam = label_encoderfam.inverse_transform(predicted_labelsfam.tolist())
decoded_labelsfam
#Load donor model from file
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
with open('donorslabels.pkl', 'rb') as file:
label_encoder = pickle.load(file)
# encoded_labels = label_encoder.fit(y)
# labels = torch.tensor(encoded_labels)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
model = EsmForSequenceClassification.from_pretrained("facebook/esm2_t12_35M_UR50D", num_labels=len(label_encoder.classes_))
model = model.to('cpu')
model.load_state_dict(torch.load("best_model_35M_t12_5v5.pth")) #model_best_35v2M.pth
model.eval()
x_test = ["""MAEVLRTLAGKPKCHALRPMILFLIMLVLVLFGYGVLSPRSLMPGSLERGFCMAVREPDH
LQRVSLPRMVYPQPKVLTPCRKDVLVVTPWLAPIVWEGTFNIDILNEQFRLQNTTIGLTV
FAIKKYVAFLKLFLETAEKHFMVGHRVHYYVFTDQPAAVPRVTLGTGRQLSVLEVRAYKR
WQDVSMRRMEMISDFCERRFLSEVDYLVCVDVDMEFRDHVGVEILTPLFGTLHPGFYGSS
REAFTYERRPQSQAYIPKDEGDFYYLGGFFGGSVQEVQRLTRACHQAMMVDQANGIEAVW
HDESHLNKYLLRHKPTKVLSPEYLWDQQLLGWPAVLRKLRFTAVPKNHQAVRNP
"""]
encoded_input = tokenizer(x_test, padding=True, truncation=True, max_length=512, return_tensors="pt")
input_ids = encoded_input["input_ids"]
attention_mask = encoded_input["attention_mask"]
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)
logits = output.logits
probabilities = F.softmax(logits, dim=1)
_, predicted_labels = torch.max(logits, dim=1)
probabilities[0]
decoded_labels = label_encoder.inverse_transform(predicted_labels.tolist())
decoded_labels
glycosyltransferase_db = {
"GT31-chsy" : {'CAZy Name': 'GT31', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT31.html'},
"GT2-CesA2" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '1 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT43-arath" : {'CAZy Name': 'GT43', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT43.html'},
"GT8-Met1" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT32-higher" : {'CAZy Name': 'GT32', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT32.html'},
"GT40" : {'CAZy Name': 'GT40', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT40.html'},
"GT16" : {'CAZy Name': 'GT16', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '6 ', 'More Info': 'http://www.cazy.org/GT16.html'},
"GT27" : {'CAZy Name': 'GT27', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '5 ', 'More Info': 'http://www.cazy.org/GT27.html'},
"GT55" : {'CAZy Name': 'GT55', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '2 ', 'More Info': 'http://www.cazy.org/GT55.html'},
"GT8-Glycogenin" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT8-1" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT25" : {'CAZy Name': 'GT25', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '6 ', 'More Info': 'http://www.cazy.org/GT25.html'},
"GT2-DPM_like" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '2 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT31-fringe" : {'CAZy Name': 'GT31', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT31.html'},
"GT2-Bact_puta" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT84" : {'CAZy Name': 'GT84', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '1 ', 'More Info': 'http://www.cazy.org/GT84.html'},
"GT13" : {'CAZy Name': 'GT13', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '6 ', 'More Info': 'http://www.cazy.org/GT13.html'},
"GT43-cele" : {'CAZy Name': 'GT43', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT43.html'},
"GT2-Bact_LPS1" : {'CAZy Name': 'GT92', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT2-Bact_Oant" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT67" : {'CAZy Name': 'GT67', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT67.html'},
"GT2-HAS" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '1 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT82" : {'CAZy Name': 'GT82', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '7 ', 'More Info': 'http://www.cazy.org/GT82.html'},
"GT24" : {'CAZy Name': 'GT24', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT24.html'},
"GT31-plant" : {'CAZy Name': 'GT31', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT31.html'},
"GT81-Bact" : {'CAZy Name': 'GT81', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '2 ', 'More Info': 'http://www.cazy.org/GT81.html'},
"GT2-Bact_gt25Me": {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT2-B3GntL" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '4 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT49" : {'CAZy Name': 'GT49', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT49.html'},
"GT34" : {'CAZy Name': 'GT34', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT34.html'},
"GT45" : {'CAZy Name': 'GT45', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT45.html'},
"GT32-lower" : {'CAZy Name': 'GT32', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT32.html'},
"GT88" : {'CAZy Name': 'GT88', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT88.html'},
"GT21" : {'CAZy Name': 'GT21', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '1 ', 'More Info': 'http://www.cazy.org/GT21.html'},
"GT2-DPG_synt" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '2 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT43-b3gat2" : {'CAZy Name': 'GT43', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT43.html'},
"GT2-Chitin_synt": {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '5 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT8-Bact" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT8-Met2" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT2-Bact_Chlor1": {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT54" : {'CAZy Name': 'GT54', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '6 ', 'More Info': 'http://www.cazy.org/GT54.html'},
"GT2-Cel_bre3" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '1 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT2-Bact_Rham" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT6" : {'CAZy Name': 'GT6 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT6.html' },
"GT2-Bact_puta2" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT7-1" : {'CAZy Name': 'GT7 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '5 ', 'More Info': 'http://www.cazy.org/GT7.html' },
"GT2-Csl" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '4 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT2-ExoU" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT2-Csl2" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '4 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT64" : {'CAZy Name': 'GT64', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT64.html'},
"GT2-Bact_Chlor2": {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT78" : {'CAZy Name': 'GT78', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '2 ', 'More Info': 'http://www.cazy.org/GT78.html'},
"GT12" : {'CAZy Name': 'GT12', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT12.html'},
"GT31-gnt" : {'CAZy Name': 'GT31', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT31.html'},
"GT2-Bact_CHS" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '5 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT62" : {'CAZy Name': 'GT62', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '3 ', 'More Info': 'http://www.cazy.org/GT62.html'},
"GT8-Met_Pla" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT15" : {'CAZy Name': 'GT15', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT15.html'},
"GT43-b3gat1" : {'CAZy Name': 'GT43', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT43.html'},
"GT31-b3glt" : {'CAZy Name': 'GT31', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '8 ', 'More Info': 'http://www.cazy.org/GT31.html'},
"GT2-CesA1" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '1 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT60" : {'CAZy Name': 'GT60', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '5 ', 'More Info': 'http://www.cazy.org/GT60.html'},
"GT14" : {'CAZy Name': 'GT14', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '7 ', 'More Info': 'http://www.cazy.org/GT14.html'},
"GT2-Bact_DPM_sy": {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '2 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT17" : {'CAZy Name': 'GT17', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '7 ', 'More Info': 'http://www.cazy.org/GT17.html'},
"GT2-Bact_LPS2" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': '3 ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT77" : {'CAZy Name': 'GT77', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT77.html'},
"GT2-Bact_EpsO" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': ' ', 'More Info': 'http://www.cazy.org/GT2.html' },
"GT43-b3gat3" : {'CAZy Name': 'GT43', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT43.html'},
"GT8-Fun" : {'CAZy Name': 'GT8 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Retaining', 'Clade': '9 ', 'More Info': 'http://www.cazy.org/GT8.html' },
"GT75" : {'CAZy Name': 'GT75', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT75.html'},
"GT2-Bact_GlfT" : {'CAZy Name': 'GT2 ', 'Alternative Name': '', 'Fold': 'A', 'Mechanism': 'Inverting', 'Clade': 'N/A', 'More Info': 'http://www.cazy.org/GT2.html' },
}
def get_family_info(family_name):
family_info = glycosyltransferase_db.get(family_name, {})
# convert information to markdown formatted string
markdown_text = ""
for key, value in family_info.items():
if key == "more_info":
markdown_text += "**{}:**".format(key.title().replace("_", " ")) + "\n"
for link in value:
markdown_text += "[{}]({})\n".format(link, link)
else:
markdown_text += "**{}:** {}\n".format(key.title().replace("_", " "), value)
return markdown_text
def fig_to_img(fig):
"""Converts a matplotlib figure to a PIL Image and returns it"""
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img = Image.open(buf)
return img
def process_family_sequence(protein_fasta):
lines = protein_fasta.split('\n')
headers = [line for line in lines if line.startswith('>')]
if len(headers) > 1:
return None, "Multiple fasta sequences detected. Please upload a fasta file with multiple sequences, otherwise only include one fasta sequence.", None
protein_sequence = ''.join(line for line in lines if not line.startswith('>'))
# Check for invalid characters
valid_characters = set("ACDEFGHIKLMNPQRSTVWYacdefghiklmnpqrstvwy") # the 20 standard amino acids
if not set(protein_sequence).issubset(valid_characters):
return None, "Invalid protein sequence. It contains characters that are not one of the 20 standard amino acids. Does your sequence contain gaps?", None
encoded_input = tokenizer([protein_sequence], padding=True, truncation=True, max_length=512, return_tensors="pt")
input_idsfam = encoded_input["input_ids"]
attention_maskfam = encoded_input["attention_mask"]
with torch.no_grad():
outputfam = modelfam(input_idsfam, attention_mask=attention_maskfam)
logitsfam = outputfam.logits
probabilitiesfam = F.softmax(logitsfam, dim=1)
_, predicted_labelsfam = torch.max(logitsfam, dim=1)
decoded_labelsfam = label_encoderfam.inverse_transform(predicted_labelsfam.tolist())
family_info = get_family_info(decoded_labelsfam[0])
figfam = plt.figure(figsize=(10, 5))
labelsfam = label_encoderfam.classes_
probabilitiesfam = probabilitiesfam.tolist()
# Convert the nested list to a flat list of probabilities
probabilitiesfam_flat = probabilitiesfam[0] if probabilitiesfam else []
# Sort labels and probabilities by probability
labels_probsfam = list(zip(labelsfam, probabilitiesfam_flat))
labels_probsfam.sort(key=lambda x: x[1], reverse=True)
# Select the top 5 fams
labels_probs_top5fam = labels_probsfam[:5]
labels_top5, probabilities_top5 = zip(*labels_probs_top5fam)
y_posfam = np.arange(len(labels_top5))
plt.barh(y_posfam, [prob*100 for prob in probabilities_top5], align='center', alpha=0.5)
plt.yticks(y_posfam, labels_top5)
plt.xlabel('Probability (%)')
plt.title('Top 5 Family Class Probabilities')
plt.xlim(0, 100)
plt.close(figfam)
img = fig_to_img(figfam)
if len(protein_sequence) < 100:
return decoded_labelsfam[0], img, None, f"**Warning:** The sequence is relatively short. Fragmentary and partial sequences may result in incorrect predictions. \n\n {family_info}"
return decoded_labelsfam[0], img, None, family_info
def process_single_sequence(protein_fasta): #, protein_file
lines = protein_fasta.split('\n')
headers = [line for line in lines if line.startswith('>')]
if len(headers) > 1:
return None, "Multiple fasta sequences detected. Please upload a fasta file with multiple sequences, otherwise only include one fasta sequence.", None
protein_sequence = ''.join(line for line in lines if not line.startswith('>'))
# Check for invalid characters
valid_characters = set("ACDEFGHIKLMNPQRSTVWYacdefghiklmnpqrstvwy") # the 20 standard amino acids
if not set(protein_sequence).issubset(valid_characters):
return None, "Invalid protein sequence. It contains characters that are not one of the 20 standard amino acids. Does your sequence contain gaps?", None
encoded_input = tokenizer([protein_sequence], padding=True, truncation=True, max_length=512, return_tensors="pt")
input_ids = encoded_input["input_ids"]
attention_mask = encoded_input["attention_mask"]
with torch.no_grad():
output = model(input_ids, attention_mask=attention_mask)
logits = output.logits
dprobabilities = F.softmax(logits, dim=1)[0]
_, predicted_labels = torch.max(logits, dim=1)
decoded_labels = label_encoder.inverse_transform(predicted_labels.tolist())
family_info = get_family_info(decoded_labels[0])
fig = plt.figure(figsize=(10, 5))
labels = label_encoder.classes_
dprobabilities = dprobabilities.tolist()
# Sort labels and probabilities by probability
labels_probs = list(zip(labels, dprobabilities))
labels_probs.sort(key=lambda x: x[1], reverse=True)
# Select the top 3 donors
labels_probs_top3 = labels_probs[:3]
labels_top3, probabilities_top3 = zip(*labels_probs_top3)
y_pos = np.arange(len(labels_top3))
plt.barh(y_pos, [prob*100 for prob in probabilities_top3], align='center', alpha=0.5)
plt.yticks(y_pos, labels_top3)
plt.xlabel('Probability (%)')
plt.title('Top 3 Donor Class Probabilities')
plt.xlim(0, 100)
plt.close(fig)
img = fig_to_img(fig)
if len(protein_sequence) < 100:
return decoded_labels[0], img, None, f"**Warning:** The sequence is relatively short. Fragmentary and partial sequences may result in incorrect predictions. \n\n {family_info}"
return decoded_labels[0], img, None, None
def process_sequence_file(protein_file): # added progress parameter that is displayed in gradio #, progress=gr.Progress()
try:
records = list(SeqIO.parse(protein_file.name, "fasta"))
except Exception as e:
return str(e)
if not os.path.exists('results'):
os.makedirs('results')
total = len(records)
for idx, record in enumerate(records):
protein_sequence = str(record.seq)
valid_characters = set("ACDEFGHIKLMNPQRSTVWYacdefghiklmnpqrstvwy")
if not set(protein_sequence).issubset(valid_characters):
with open(f'results/result_{idx+1}.txt', 'w') as file:
file.write("Invalid protein sequence. It contains characters that are not one of the 20 standard amino acids. Does your sequence contain gaps?")
continue
label, img, _, info = process_single_sequence(protein_sequence)
img.save(f'results/result_{idx+1}.png')
with open(f'results/result_{idx+1}.txt', 'w') as file:
file.write(f'Predicted Donor: {label}\n\n{info}')
# progress(idx/total) # Update the progress bar
# Create a zip file w/ results -- To Do: Figure out how to improve compression for large files
with zipfile.ZipFile('predicted_results.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk('results/'):
for file in files:
zipf.write(os.path.join(root, file))
return 'predicted_results.zip' #Provide indication of how to interpret downloaded zip file? f"**Warning:** The sequence is relatively short. Fragmentary and partial sequences may result in incorrect predictions.
# Function to mask a residue at a particular position
def mask_residue(sequence, position):
return sequence[:position] + 'X' + sequence[position+1:]
def generate_heatmap(protein_fasta):
lines = protein_fasta.split('\n')
headers = [line for line in lines if line.startswith('>')]
if len(headers) > 1:
return None, "Multiple fasta sequences detected. Please upload a fasta file with multiple sequences, otherwise only include one fasta sequence.", None
protein_sequence = ''.join(line for line in lines if not line.startswith('>'))
# Check for invalid characters
valid_characters = set("ACDEFGHIKLMNPQRSTVWYacdefghiklmnpqrstvwy") # the 20 standard amino acids
if not set(protein_sequence).issubset(valid_characters):
return None, "Invalid protein sequence. It contains characters that are not one of the 20 standard amino acids. Does your sequence contain gaps?", None
# Tokenize and predict for original sequence
encoded_input = tokenizer([protein_sequence], padding=True, truncation=True, max_length=512, return_tensors="pt")
with torch.no_grad():
original_output = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"])
original_probabilities = F.softmax(original_output.logits, dim=1).cpu().numpy()[0]
# Initialize an array to hold the importance scores
importance_scores = np.zeros((len(protein_sequence), len(original_probabilities)))
# Define the size of each group
group_size = 10 # You can change this
# Initialize an array to hold the importance scores
num_groups = len(original_sequence) // group_size + (len(original_sequence) % group_size > 0)
importance_scores = np.zeros((num_groups, len(original_probabilities)))
# Initialize tqdm progress bar
# with tqdm(total=num_groups, desc="Processing groups", position=0, leave=True) as pbar:
# # Loop through each group of residues in the sequence
for i in range(0, len(protein_sequence), group_size):
# Mask the residues in the group at positions [i, i + group_size)
masked_sequence = protein_sequence[:i] + 'X' * min(group_size, len(protein_sequence) - i) + protein_sequence[i + group_size:]
# Tokenize and predict for the masked sequence
encoded_input = tokenizer([masked_sequence], padding=True, truncation=True, max_length=512, return_tensors="pt")
with torch.no_grad():
masked_output = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"])
masked_probabilities = F.softmax(masked_output.logits, dim=1).cpu().numpy()[0]
# Calculate the change in probabilities and store it as the importance score
group_index = i // group_size
importance_scores[group_index, :] = np.abs(original_probabilities - masked_probabilities)
progress = (i // group_size + 1) / num_groups * 100
print(f"Progress: {progress:.2f}%")
figmap, ax = plt.subplots(figsize=(20, 20))
sns.heatmap(importance_scores, annot=True, cmap="coolwarm", xticklabels=label_encoder.classes_, yticklabels=[f"{i}-{i+group_size-1}" for i in range(0, len(original_sequence), group_size)], ax=ax)
ax.set_xlabel("Predicted Labels")
ax.set_ylabel("Residue Position Groups")
img = fig_to_img(figmap)
return img
def main_function_single(sequence):
# Process seq, and return outputs for both fam and don
family_label, family_img, _, family_info = process_family_sequence(sequence)
donor_label, donor_img, *_ = process_single_sequence(sequence)
figmap = generate_heatmap(sequence)
return family_label, family_img, family_info, donor_label, donor_img, figmap
def main_function_upload(protein_file): #, progress=gr.Progress()
return process_sequence_file(protein_file) #, progress
prediction_imagefam = gr.outputs.Image(type='pil', label="Family prediction graph")
prediction_imagedonor = gr.outputs.Image(type='pil', label="Donor prediction graph")
prediction_explain = gr.outputs.Image(type='pil', label="Donor prediction explaination")
with gr.Blocks() as app:
gr.Markdown("# Glydentify")
with gr.Tab("Single Sequence Prediction"):
with gr.Row().style(equal_height=True):
with gr.Column():
sequence = gr.inputs.Textbox(lines=15, placeholder='Enter Protein Sequence Here...', label="Protein Sequence")
with gr.Column():
with gr.Accordion("Example:"):
gr.Markdown("""
\>Q9LTZ9|GALS2_ARATH Galactan beta-1,4-galactosyltransferase GALS2
MAKERDQNTKDKNLLICFLWNFSAELKLALMALLVLCTLATLLPFLPSSFSISASELRFC
ISRIAVNSTSVNFTTVVEKPVLDNAVKLTEKPVLDNGVTKQPLTEEKVLNNGVIKRTFTG
YGWAAYNFVLMNAYRGGVNTFAVIGLSSKPLHVYSHPTYRCEWIPLNQSDNRILTDGTKI
LTDWGYGRVYTTVVVNCTFPSNTVINPKNTGGTLLLHATTGDTDRNITDSIPVLTETPNT
VDFALYESNLRRREKYDYLYCGSSLYGNLSPQRIREWIAYHVRFFGERSHFVLHDAGGIT
EEVFEVLKPWIELGRVTVHDIREQERFDGYYHNQFMVVNDCLHRYRFMAKWMFFFDVDEF
IYVPAKSSISSVMVSLEEYSQFTIEQMPMSSQLCYDGDGPARTYRKWGFEKLAYRDVKKV
PRRDRKYAVQPRNVFATGVHMSQHLQGKTYHRAEGKIRYFHYHGSISQRREPCRHLYNGT
RIVHENN
""")
family_prediction = gr.outputs.Textbox(label="Predicted family")
donor_prediction = gr.outputs.Textbox(label="Predicted donor")
info_markdown = gr.Markdown()
# Predict and Clear buttons
with gr.Row().style(equal_height=True):
with gr.Column():
predict_button = gr.Button("Predict")
predict_button.click(main_function_single, inputs=sequence,
outputs=[family_prediction, prediction_imagefam, info_markdown,
donor_prediction, prediction_imagedonor, prediction_explain])
# Family & Donor Section
with gr.Row().style(equal_height=True):
with gr.Column():
with gr.Accordion("Prediction Bar Graphs:"):
prediction_imagefam.render() # = gr.outputs.Image(type='pil', label="Family prediction graph")
prediction_imagedonor.render() # = gr.outputs.Image(type='pil', label="Donor prediction graph")
# Explain Section
with gr.Column():
with gr.Accordion("Donor explanation"):
prediction_explain.render() # = gr.outputs.Image(type='pil', label="Donor prediction explaination")
with gr.Tab("Multiple Sequence Prediction"):
with gr.Row().style(equal_height=True):
with gr.Column():
protein_file = gr.inputs.File(label="Upload FASTA file")
with gr.Column():
result_file = gr.outputs.File(label="Download predictions of uploaded sequences")
with gr.Row().style(equal_height=True):
with gr.Column():
process_button = gr.Button("Process")
process_button.click(main_function_upload, inputs=protein_file, outputs=[result_file])
with gr.Column():
clear = gr.Button("Clear")
clear.click(lambda: None)
# clear.click()
app.launch(show_error=True)
|