Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
from PIL import Image, ImageOps | |
from huggingface_hub import snapshot_download | |
from pyramid_dit import PyramidDiTForVideoGeneration | |
from diffusers.utils import export_to_video | |
import spaces | |
# Constants | |
MODEL_PATH = "pyramid-flow-model" | |
MODEL_REPO = "rain1011/pyramid-flow-sd3" | |
MODEL_VARIANT = "diffusion_transformer_768p" | |
MODEL_DTYPE = "bf16" | |
def center_crop(image, target_width, target_height): | |
width, height = image.size | |
aspect_ratio_target = target_width / target_height | |
aspect_ratio_image = width / height | |
if aspect_ratio_image > aspect_ratio_target: | |
# Crop the width (left and right) | |
new_width = int(height * aspect_ratio_target) | |
left = (width - new_width) // 2 | |
right = left + new_width | |
top, bottom = 0, height | |
else: | |
# Crop the height (top and bottom) | |
new_height = int(width / aspect_ratio_target) | |
top = (height - new_height) // 2 | |
bottom = top + new_height | |
left, right = 0, width | |
image = image.crop((left, top, right, bottom)) | |
return image | |
# Download and load the model | |
def load_model(): | |
if not os.path.exists(MODEL_PATH): | |
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model') | |
model = PyramidDiTForVideoGeneration( | |
MODEL_PATH, | |
MODEL_DTYPE, | |
model_variant=MODEL_VARIANT, | |
) | |
model.vae.to("cuda") | |
model.dit.to("cuda") | |
model.text_encoder.to("cuda") | |
model.vae.enable_tiling() | |
return model | |
# Global model variable | |
model = load_model() | |
# Text-to-video generation function | |
def generate_video(prompt, duration, guidance_scale, video_guidance_scale): | |
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS) | |
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 | |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
frames = model.generate( | |
prompt=prompt, | |
num_inference_steps=[20, 20, 20], | |
video_num_inference_steps=[10, 10, 10], | |
height=768, | |
width=1280, | |
temp=temp, | |
guidance_scale=guidance_scale, | |
video_guidance_scale=video_guidance_scale, | |
output_type="pil", | |
save_memory=True, | |
) | |
output_path = "output_video.mp4" | |
export_to_video(frames, output_path, fps=24) | |
return output_path | |
# Image-to-video generation function | |
def generate_video_from_image(image, prompt, duration, video_guidance_scale): | |
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS) | |
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 | |
target_size = (1280, 720) | |
cropped_image = center_crop(image, 1280, 720) | |
resized_image = cropped_image.resize((1280, 720)) | |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
frames = model.generate_i2v( | |
prompt=prompt, | |
input_image=resized_image, | |
num_inference_steps=[10, 10, 10], | |
temp=temp, | |
guidance_scale=7.0, | |
video_guidance_scale=video_guidance_scale, | |
output_type="pil", | |
save_memory=True, | |
) | |
output_path = "output_video_i2v.mp4" | |
export_to_video(frames, output_path, fps=24) | |
return output_path | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Pyramid Flow Video Generation Demo") | |
with gr.Tab("Text-to-Video"): | |
with gr.Row(): | |
with gr.Column(): | |
t2v_prompt = gr.Textbox(label="Prompt") | |
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") | |
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale") | |
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale") | |
t2v_generate_btn = gr.Button("Generate Video") | |
with gr.Column(): | |
t2v_output = gr.Video(label="Generated Video") | |
t2v_generate_btn.click( | |
generate_video, | |
inputs=[t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale], | |
outputs=t2v_output | |
) | |
with gr.Tab("Image-to-Video"): | |
with gr.Row(): | |
with gr.Column(): | |
i2v_image = gr.Image(type="pil", label="Input Image") | |
i2v_prompt = gr.Textbox(label="Prompt") | |
i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") | |
i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale") | |
i2v_generate_btn = gr.Button("Generate Video") | |
with gr.Column(): | |
i2v_output = gr.Video(label="Generated Video") | |
i2v_generate_btn.click( | |
generate_video_from_image, | |
inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale], | |
outputs=i2v_output | |
) | |
demo.launch() |