|
from llama_index.llms.ollama import Ollama |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, set_global_tokenizer |
|
from transformers import AutoTokenizer |
|
from llama_index.core.memory import ChatMemoryBuffer |
|
import gradio as gr |
|
|
|
|
|
DATA_DIR = "./docs" |
|
|
|
|
|
llm = Ollama(model="llama2", request_timeout=180.0) |
|
|
|
|
|
embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
set_global_tokenizer( |
|
AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf").encode |
|
) |
|
|
|
|
|
documents = SimpleDirectoryReader(DATA_DIR).load_data() |
|
|
|
|
|
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model) |
|
|
|
|
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
"""You are a Q&A assistant. For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. |
|
Context: |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
|
|
memory = ChatMemoryBuffer.from_defaults(token_limit=3900) |
|
|
|
|
|
chat_engine = index.as_chat_engine( |
|
llm=llm, |
|
text_qa_template=text_qa_template, |
|
streaming=True, |
|
memory=memory, |
|
|
|
chat_mode="condense_question" |
|
) |
|
|
|
|
|
|
|
|
|
def chat_with_ollama(message, history): |
|
|
|
|
|
|
|
if history == []: |
|
print("# cleared history, resetting chatbot state") |
|
chat_engine.reset() |
|
|
|
streaming_response = chat_engine.stream_chat(message) |
|
response = "" |
|
for text in streaming_response.response_gen: |
|
response += text |
|
yield response |
|
|
|
|
|
chatbot = gr.ChatInterface( |
|
chat_with_ollama, title="Document-Based Chatbot with LLM") |
|
|
|
|
|
chatbot.launch() |
|
|