GenBIChatbot / app.py
Ari
Update app.py
a511dd2 verified
raw
history blame
4.16 kB
import os
import streamlit as st
import pandas as pd
import sqlite3
import openai
from langchain import OpenAI
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.utilities import SQLDatabase
from langchain_community.document_loaders import CSVLoader
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA
import sqlparse
import logging
# OpenAI API key (ensure it is securely stored)
openai.api_key = os.getenv("OPENAI_API_KEY")
# Step 1: Upload CSV data file (or use default)
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
if csv_file is None:
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
st.write("Using default data.csv file.")
else:
data = pd.read_csv(csv_file)
st.write(f"Data Preview ({csv_file.name}):")
st.dataframe(data.head())
# Step 2: Load CSV data into SQLite database with dynamic table name
conn = sqlite3.connect(':memory:') # Use an in-memory SQLite database
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
data.to_sql(table_name, conn, index=False, if_exists='replace')
# SQL table metadata (for validation and schema)
valid_columns = list(data.columns)
# Debug: Display valid columns for user to verify
st.write(f"Valid columns: {valid_columns}")
# Step 3: Set up the SQL Database for LangChain
db = SQLDatabase.from_uri('sqlite:///:memory:')
db.raw_connection = conn # Use the in-memory connection for LangChain
# Step 4: Create the SQL agent with increased iteration and time limits
sql_agent = create_sql_agent(
OpenAI(temperature=0),
db=db,
verbose=True,
max_iterations=20, # Increased iteration limit
max_execution_time=90 # Set timeout limit to 90 seconds
)
# Step 5: Use FAISS with RAG for context retrieval
embeddings = OpenAIEmbeddings()
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
documents = loader.load()
vector_store = FAISS.from_documents(documents, embeddings)
retriever = vector_store.as_retriever()
rag_chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), retriever=retriever)
# Step 6: Define SQL validation helpers
def validate_sql(query, valid_columns):
"""Validates the SQL query by ensuring it references only valid columns."""
parsed = sqlparse.parse(query)
for token in parsed[0].tokens:
if token.ttype is None: # If it's a column name
column_name = str(token).strip()
if column_name not in valid_columns:
return False
return True
def validate_sql_with_sqlparse(query):
"""Validates SQL syntax using sqlparse."""
parsed_query = sqlparse.parse(query)
return len(parsed_query) > 0
# Step 7: Generate SQL query based on user input and run it with LangChain SQL Agent
user_prompt = st.text_input("Enter your natural language prompt:")
if user_prompt:
try:
# Step 8: Add valid column names to the prompt
column_hints = f" Use only these columns: {', '.join(valid_columns)}"
prompt_with_columns = user_prompt + column_hints
# Step 9: Retrieve context using RAG
context = rag_chain.run(prompt_with_columns)
st.write(f"Retrieved Context: {context}")
# Step 10: Generate SQL query using SQL agent
generated_sql = sql_agent.run(f"{prompt_with_columns} {context}")
# Debug: Display generated SQL query for inspection
st.write(f"Generated SQL Query: {generated_sql}")
# Step 11: Validate SQL query
if not validate_sql_with_sqlparse(generated_sql):
st.write("Generated SQL is not valid.")
elif not validate_sql(generated_sql, valid_columns):
st.write("Generated SQL references invalid columns.")
else:
# Step 12: Execute SQL query
result = pd.read_sql(generated_sql, conn)
st.write("Query Results:")
st.dataframe(result)
except Exception as e:
logging.error(f"An error occurred: {e}")
st.write(f"Error: {e}")