Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -34,12 +34,21 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
36 |
|
|
|
|
|
|
|
37 |
# Step 3: Set up the SQL Database for LangChain
|
38 |
db = SQLDatabase.from_uri('sqlite:///:memory:')
|
39 |
db.raw_connection = conn # Use the in-memory connection for LangChain
|
40 |
|
41 |
# Step 4: Create the SQL agent with the correct parameter name
|
42 |
-
sql_agent = create_sql_agent(
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Step 5: Use FAISS with RAG for context retrieval
|
45 |
embeddings = OpenAIEmbeddings()
|
@@ -53,9 +62,12 @@ rag_chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), retriever=ret
|
|
53 |
# Step 6: Define SQL validation helpers
|
54 |
def validate_sql(query, valid_columns):
|
55 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
return True
|
60 |
|
61 |
def validate_sql_with_sqlparse(query):
|
@@ -73,6 +85,8 @@ if user_prompt:
|
|
73 |
|
74 |
# Step 9: Generate SQL query using SQL agent
|
75 |
generated_sql = sql_agent.run(f"{user_prompt} {context}")
|
|
|
|
|
76 |
st.write(f"Generated SQL Query: {generated_sql}")
|
77 |
|
78 |
# Step 10: Validate SQL query
|
|
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
36 |
|
37 |
+
# Debug: Display valid columns for user to verify
|
38 |
+
st.write(f"Valid columns: {valid_columns}")
|
39 |
+
|
40 |
# Step 3: Set up the SQL Database for LangChain
|
41 |
db = SQLDatabase.from_uri('sqlite:///:memory:')
|
42 |
db.raw_connection = conn # Use the in-memory connection for LangChain
|
43 |
|
44 |
# Step 4: Create the SQL agent with the correct parameter name
|
45 |
+
sql_agent = create_sql_agent(
|
46 |
+
OpenAI(temperature=0),
|
47 |
+
db=db,
|
48 |
+
verbose=True,
|
49 |
+
max_iterations=15, # Increased iteration limit
|
50 |
+
max_execution_time=60 # Set timeout limit to 60 seconds
|
51 |
+
)
|
52 |
|
53 |
# Step 5: Use FAISS with RAG for context retrieval
|
54 |
embeddings = OpenAIEmbeddings()
|
|
|
62 |
# Step 6: Define SQL validation helpers
|
63 |
def validate_sql(query, valid_columns):
|
64 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
65 |
+
parsed = sqlparse.parse(query)
|
66 |
+
for token in parsed[0].tokens:
|
67 |
+
if token.ttype is None: # If it's a column name
|
68 |
+
column_name = str(token).strip()
|
69 |
+
if column_name not in valid_columns:
|
70 |
+
return False
|
71 |
return True
|
72 |
|
73 |
def validate_sql_with_sqlparse(query):
|
|
|
85 |
|
86 |
# Step 9: Generate SQL query using SQL agent
|
87 |
generated_sql = sql_agent.run(f"{user_prompt} {context}")
|
88 |
+
|
89 |
+
# Debug: Display generated SQL query for inspection
|
90 |
st.write(f"Generated SQL Query: {generated_sql}")
|
91 |
|
92 |
# Step 10: Validate SQL query
|