Spaces:
Running
Running
arithescientist
commited on
Commit
•
6dd2b20
1
Parent(s):
9bff135
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,13 @@ import streamlit as st
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import logging
|
6 |
-
import
|
7 |
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
|
|
|
|
|
8 |
from langchain.sql_database import SQLDatabase
|
9 |
-
from langchain.
|
10 |
-
from langchain.
|
11 |
-
# Import ChatOpenAI from langchain_community
|
12 |
-
from langchain_community.chat_models import ChatOpenAI
|
13 |
|
14 |
# Initialize logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
@@ -20,8 +20,6 @@ if 'history' not in st.session_state:
|
|
20 |
|
21 |
# OpenAI API key
|
22 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
23 |
-
# Alternatively, you can set your API key directly
|
24 |
-
# openai_api_key = "YOUR_OPENAI_API_KEY"
|
25 |
|
26 |
# Check if the API key is set
|
27 |
if not openai_api_key:
|
@@ -54,122 +52,18 @@ engine = SQLDatabase.from_uri(f"sqlite:///{db_file}", include_tables=[table_name
|
|
54 |
# Initialize the LLM
|
55 |
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
|
56 |
|
57 |
-
# Step 3: Create the agent
|
58 |
toolkit = SQLDatabaseToolkit(db=engine, llm=llm)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
Provide your answer in the following JSON format:
|
71 |
-
{{
|
72 |
-
"columns": [list of columns or aggregation functions],
|
73 |
-
"table": "table_name",
|
74 |
-
"conditions": "SQL WHERE clause conditions",
|
75 |
-
"aggregation": "any aggregation functions needed",
|
76 |
-
"group_by": [list of columns to group by],
|
77 |
-
"order_by": "column to order by and direction (e.g., 'Total_Sales DESC')",
|
78 |
-
"limit": "number of records to return"
|
79 |
-
}}
|
80 |
-
|
81 |
-
Answer:
|
82 |
-
"""
|
83 |
-
# Use llm.predict instead of llm()
|
84 |
-
response = llm.predict(parsing_prompt)
|
85 |
-
try:
|
86 |
-
parsed_query = json.loads(response)
|
87 |
-
return parsed_query
|
88 |
-
except json.JSONDecodeError as e:
|
89 |
-
logging.error(f"JSON decoding error: {e}")
|
90 |
-
return None
|
91 |
-
|
92 |
-
# Layer 2: Generating the SQL Query
|
93 |
-
def construct_sql_query(parsed_info):
|
94 |
-
if not parsed_info:
|
95 |
-
return None
|
96 |
-
|
97 |
-
columns = ', '.join(parsed_info.get('columns', ['*']))
|
98 |
-
table = parsed_info.get('table', table_name)
|
99 |
-
conditions = parsed_info.get('conditions', '')
|
100 |
-
group_by = parsed_info.get('group_by', [])
|
101 |
-
order_by = parsed_info.get('order_by', '')
|
102 |
-
limit = parsed_info.get('limit', '')
|
103 |
-
|
104 |
-
sql_query = f"SELECT {columns} FROM {table}"
|
105 |
-
|
106 |
-
if conditions:
|
107 |
-
sql_query += f" WHERE {conditions}"
|
108 |
-
|
109 |
-
if group_by:
|
110 |
-
sql_query += f" GROUP BY {', '.join(group_by)}"
|
111 |
-
|
112 |
-
if order_by:
|
113 |
-
sql_query += f" ORDER BY {order_by}"
|
114 |
-
|
115 |
-
if limit:
|
116 |
-
sql_query += f" LIMIT {limit}"
|
117 |
-
|
118 |
-
return sql_query
|
119 |
-
|
120 |
-
# Layer 3: Executing the Query and Retrieving Data
|
121 |
-
def execute_sql_query(sql_query):
|
122 |
-
try:
|
123 |
-
result = pd.read_sql_query(sql_query, conn)
|
124 |
-
return result
|
125 |
-
except Exception as e:
|
126 |
-
logging.error(f"SQL execution error: {e}")
|
127 |
-
return None
|
128 |
-
|
129 |
-
# Layer 4: Formatting and Presenting the Results
|
130 |
-
def display_results(result):
|
131 |
-
if result is not None and not result.empty:
|
132 |
-
st.session_state.history.append({"role": "assistant", "content": "Here are the results:"})
|
133 |
-
st.session_state.history.append({"role": "assistant", "content": result.head(10)})
|
134 |
-
else:
|
135 |
-
assistant_response = "The query returned no results. Please try a different question."
|
136 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
137 |
-
|
138 |
-
# Layer 5: Generating Insights or Additional Analysis (Optional)
|
139 |
-
def generate_insights(question, result):
|
140 |
-
insights_template = """
|
141 |
-
You are an expert data analyst. Based on the user's question and the SQL query result provided below, generate a concise analysis that includes key data insights and actionable recommendations. Limit the response to a maximum of 150 words.
|
142 |
-
|
143 |
-
User's Question: {question}
|
144 |
-
|
145 |
-
SQL Query Result:
|
146 |
-
{result}
|
147 |
-
|
148 |
-
Concise Analysis:
|
149 |
-
"""
|
150 |
-
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
151 |
-
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
152 |
-
|
153 |
-
result_str = result.to_string(index=False)
|
154 |
-
insights = insights_chain.run({'question': question, 'result': result_str})
|
155 |
-
|
156 |
-
st.session_state.history.append({"role": "assistant", "content": insights})
|
157 |
-
|
158 |
-
# Function to Generate Data Summary (for non-SQL responses)
|
159 |
-
def generate_data_summary():
|
160 |
-
summary_prompt = f"""
|
161 |
-
You are an assistant that provides a summary of the dataset.
|
162 |
-
|
163 |
-
Dataset Description:
|
164 |
-
{data.describe(include='all').to_string()}
|
165 |
-
|
166 |
-
Provide a concise summary of the dataset, highlighting key statistics and any notable observations.
|
167 |
-
"""
|
168 |
-
# Use llm.predict instead of llm()
|
169 |
-
summary = llm.predict(summary_prompt)
|
170 |
-
return summary
|
171 |
-
|
172 |
-
# Step 5: Define the callback function
|
173 |
def process_input():
|
174 |
user_prompt = st.session_state['user_input']
|
175 |
|
@@ -178,30 +72,58 @@ def process_input():
|
|
178 |
# Append user message to history
|
179 |
st.session_state.history.append({"role": "user", "content": user_prompt})
|
180 |
|
|
|
181 |
with st.spinner("Processing..."):
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
200 |
else:
|
201 |
-
#
|
202 |
-
|
203 |
-
st.session_state.history.append({"role": "assistant", "content":
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
except Exception as e:
|
206 |
logging.error(f"An error occurred: {e}")
|
207 |
assistant_response = f"Error: {e}"
|
@@ -210,7 +132,7 @@ def process_input():
|
|
210 |
# Reset user input
|
211 |
st.session_state['user_input'] = ''
|
212 |
|
213 |
-
# Step
|
214 |
for message in st.session_state.history:
|
215 |
if message['role'] == 'user':
|
216 |
st.markdown(f"**User:** {message['content']}")
|
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import logging
|
6 |
+
from langchain.agents import create_sql_agent
|
7 |
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
|
8 |
+
from langchain.agents.agent_types import AgentType
|
9 |
+
from langchain.llms import OpenAI
|
10 |
from langchain.sql_database import SQLDatabase
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.evaluation import load_evaluator
|
|
|
|
|
13 |
|
14 |
# Initialize logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
|
|
20 |
|
21 |
# OpenAI API key
|
22 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
23 |
|
24 |
# Check if the API key is set
|
25 |
if not openai_api_key:
|
|
|
52 |
# Initialize the LLM
|
53 |
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
|
54 |
|
55 |
+
# Step 3: Create the agent
|
56 |
toolkit = SQLDatabaseToolkit(db=engine, llm=llm)
|
57 |
|
58 |
+
sql_agent = create_sql_agent(
|
59 |
+
llm=llm,
|
60 |
+
toolkit=toolkit,
|
61 |
+
verbose=True,
|
62 |
+
agent_type=AgentType.OPENAI_FUNCTIONS,
|
63 |
+
max_iterations=5
|
64 |
+
)
|
65 |
+
|
66 |
+
# Step 4: Define the callback function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def process_input():
|
68 |
user_prompt = st.session_state['user_input']
|
69 |
|
|
|
72 |
# Append user message to history
|
73 |
st.session_state.history.append({"role": "user", "content": user_prompt})
|
74 |
|
75 |
+
# Use the agent to generate the SQL query and get the response
|
76 |
with st.spinner("Processing..."):
|
77 |
+
response = sql_agent.run(user_prompt)
|
78 |
+
|
79 |
+
# Check if the response contains a SQL query
|
80 |
+
if "```sql" in response:
|
81 |
+
# Extract the SQL query
|
82 |
+
start_index = response.find("```sql") + len("```sql")
|
83 |
+
end_index = response.find("```", start_index)
|
84 |
+
sql_query = response[start_index:end_index].strip()
|
85 |
+
else:
|
86 |
+
# If no SQL code is found, assume the entire response is the SQL query
|
87 |
+
sql_query = response.strip()
|
88 |
+
|
89 |
+
logging.info(f"Generated SQL Query: {sql_query}")
|
90 |
+
|
91 |
+
# Attempt to execute SQL query and handle exceptions
|
92 |
+
try:
|
93 |
+
result = pd.read_sql_query(sql_query, conn)
|
94 |
+
|
95 |
+
if result.empty:
|
96 |
+
assistant_response = "The query returned no results. Please try a different question."
|
97 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
98 |
else:
|
99 |
+
# Limit the result to first 10 rows for display
|
100 |
+
result_display = result.head(10)
|
101 |
+
st.session_state.history.append({"role": "assistant", "content": "Here are the results:"})
|
102 |
+
st.session_state.history.append({"role": "assistant", "content": result_display})
|
103 |
+
|
104 |
+
# Generate insights based on the query result
|
105 |
+
insights_template = """
|
106 |
+
You are an expert data analyst. Based on the user's question and the SQL query result provided below, generate a concise analysis that includes key data insights and actionable recommendations. Limit the response to a maximum of 150 words.
|
107 |
+
|
108 |
+
User's Question: {question}
|
109 |
+
|
110 |
+
SQL Query Result:
|
111 |
+
{result}
|
112 |
+
|
113 |
+
Concise Analysis:
|
114 |
+
"""
|
115 |
+
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
116 |
+
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
117 |
+
|
118 |
+
result_str = result_display.to_string(index=False)
|
119 |
+
insights = insights_chain.run({'question': user_prompt, 'result': result_str})
|
120 |
+
|
121 |
+
# Append the assistant's insights to the history
|
122 |
+
st.session_state.history.append({"role": "assistant", "content": insights})
|
123 |
+
except Exception as e:
|
124 |
+
logging.error(f"An error occurred during SQL execution: {e}")
|
125 |
+
assistant_response = f"Error executing SQL query: {e}"
|
126 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
127 |
except Exception as e:
|
128 |
logging.error(f"An error occurred: {e}")
|
129 |
assistant_response = f"Error: {e}"
|
|
|
132 |
# Reset user input
|
133 |
st.session_state['user_input'] = ''
|
134 |
|
135 |
+
# Step 5: Display conversation history
|
136 |
for message in st.session_state.history:
|
137 |
if message['role'] == 'user':
|
138 |
st.markdown(f"**User:** {message['content']}")
|