Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,68 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import sqlite3
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Function to find a query based on the user prompt
|
17 |
-
def get_query_from_prompt(user_prompt):
|
18 |
-
for item in prompt_data['prompts']:
|
19 |
-
if item['question'].lower() in user_prompt.lower():
|
20 |
-
return item['query']
|
21 |
-
return None # Return None if no matching query is found
|
22 |
-
|
23 |
-
# Step 1: Upload metadata.csv file (or use default)
|
24 |
-
metadata_file = st.file_uploader("Upload your metadata.csv file", type=["csv"])
|
25 |
-
if metadata_file is None:
|
26 |
-
metadata = pd.read_csv(DEFAULT_METADATA_PATH)
|
27 |
-
st.write("Using default metadata.csv file.")
|
28 |
-
else:
|
29 |
-
metadata = pd.read_csv(metadata_file)
|
30 |
-
st.write("Metadata loaded successfully!")
|
31 |
-
st.dataframe(metadata)
|
32 |
|
33 |
-
# Step
|
34 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
35 |
if csv_file is None:
|
36 |
-
data = pd.read_csv(
|
37 |
st.write("Using default data.csv file.")
|
38 |
else:
|
39 |
data = pd.read_csv(csv_file)
|
40 |
st.write("Data Preview:")
|
41 |
st.dataframe(data.head())
|
42 |
|
43 |
-
# Step
|
44 |
-
conn = sqlite3.connect(':memory:') #
|
45 |
data.to_sql('sales_data', conn, index=False, if_exists='replace')
|
46 |
|
47 |
-
#
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if user_prompt:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
st.write("
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
st.write("Sorry, I couldn't find a matching query for your prompt.")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import sqlite3
|
4 |
+
import openai
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from langchain import OpenAI
|
7 |
+
from langchain.agents import create_sql_agent
|
8 |
+
from langchain.sql_database import SQLDatabase
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.document_loaders import CSVLoader
|
11 |
+
from langchain.vectorstores import FAISS
|
12 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
13 |
+
|
14 |
+
# OpenAI API key (ensure it's stored securely)
|
15 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Step 1: Upload CSV data file (or use default)
|
18 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
19 |
if csv_file is None:
|
20 |
+
data = pd.read_csv("default_data.csv") # Using default CSV
|
21 |
st.write("Using default data.csv file.")
|
22 |
else:
|
23 |
data = pd.read_csv(csv_file)
|
24 |
st.write("Data Preview:")
|
25 |
st.dataframe(data.head())
|
26 |
|
27 |
+
# Step 2: Load CSV data into SQLite database (SQL agent)
|
28 |
+
conn = sqlite3.connect(':memory:') # In-memory SQLite database
|
29 |
data.to_sql('sales_data', conn, index=False, if_exists='replace')
|
30 |
|
31 |
+
# Create a SQL database connection for LangChain
|
32 |
+
db = SQLDatabase.from_uri('sqlite:///:memory:')
|
33 |
+
db.raw_connection = conn
|
34 |
+
|
35 |
+
# Step 3: Use LLaMA for context retrieval (RAG)
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
|
37 |
+
llama_model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b")
|
38 |
+
|
39 |
+
# Load and vectorize documents for retrieval
|
40 |
+
embeddings = OpenAIEmbeddings() # Using OpenAI embeddings, but you can swap this out for another one
|
41 |
+
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
42 |
+
documents = loader.load()
|
43 |
|
44 |
+
# Use FAISS to create a retriever from the documents
|
45 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
46 |
+
retriever = vector_store.as_retriever()
|
47 |
+
|
48 |
+
# Step 4: Create a RAG (Retrieval-Augmented Generation) chain
|
49 |
+
rag_chain = RetrievalQA.from_chain_type(llama_model, retriever=retriever)
|
50 |
+
|
51 |
+
# Step 5: Use OpenAI for SQL query generation
|
52 |
+
openai_llm = OpenAI(temperature=0) # OpenAI LLM for SQL query generation
|
53 |
+
sql_agent = create_sql_agent(openai_llm, db, verbose=True)
|
54 |
+
|
55 |
+
# Step 6: Get user prompt and augment with RAG retrieval before SQL generation
|
56 |
+
user_prompt = st.text_input("Enter your natural language prompt:")
|
57 |
if user_prompt:
|
58 |
+
try:
|
59 |
+
# Step 7: Retrieve context using LLaMA-based RAG
|
60 |
+
rag_result = rag_chain.run(user_prompt)
|
61 |
+
st.write(f"Retrieved Context from LLaMA RAG: {rag_result}")
|
62 |
+
|
63 |
+
# Step 8: Generate and execute SQL query using OpenAI based on prompt and retrieved context
|
64 |
+
query_input = f"{user_prompt} {rag_result}"
|
65 |
+
response = sql_agent.run(query_input)
|
66 |
+
st.write(f"Generated SQL Query Results: {response}")
|
67 |
+
except Exception as e:
|
68 |
+
st.write(f"An error occurred: {e}")
|
|