Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,31 @@ import streamlit as st
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
-
from langchain_openai import
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from langchain_community.document_loaders import CSVLoader
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
from langchain.chains import RetrievalQA
|
|
|
|
|
|
|
12 |
import sqlparse
|
13 |
import logging
|
14 |
|
15 |
-
#
|
16 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
20 |
if csv_file is None:
|
21 |
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
@@ -25,7 +37,7 @@ else:
|
|
25 |
st.write(f"Data Preview ({csv_file.name}):")
|
26 |
st.dataframe(data.head())
|
27 |
|
28 |
-
#
|
29 |
db_file = 'my_database.db'
|
30 |
conn = sqlite3.connect(db_file)
|
31 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
@@ -33,76 +45,65 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
33 |
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
36 |
-
|
37 |
-
# Debug: Display valid columns for user to verify
|
38 |
st.write(f"Valid columns: {valid_columns}")
|
39 |
|
40 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
db = SQLDatabase.from_uri(f'sqlite:///{db_file}')
|
42 |
-
db.raw_connection = conn
|
43 |
|
44 |
-
#
|
45 |
sql_agent = create_sql_agent(
|
46 |
-
|
47 |
db=db,
|
48 |
verbose=True,
|
49 |
max_iterations=20, # Increased iteration limit
|
50 |
max_execution_time=90 # Set timeout limit to 90 seconds
|
51 |
)
|
52 |
|
53 |
-
#
|
54 |
-
embeddings =
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
56 |
documents = loader.load()
|
57 |
-
|
58 |
vector_store = FAISS.from_documents(documents, embeddings)
|
59 |
retriever = vector_store.as_retriever()
|
60 |
-
rag_chain = RetrievalQA.from_chain_type(llm=
|
61 |
-
|
62 |
-
# Step 6: Define SQL validation helpers
|
63 |
-
def validate_sql(query, valid_columns):
|
64 |
-
"""Validates the SQL query by ensuring it references only valid columns."""
|
65 |
-
parsed = sqlparse.parse(query)
|
66 |
-
for token in parsed[0].tokens:
|
67 |
-
if token.ttype is None: # If it's a column name
|
68 |
-
column_name = str(token).strip()
|
69 |
-
if column_name not in valid_columns:
|
70 |
-
return False
|
71 |
-
return True
|
72 |
|
73 |
-
|
74 |
-
"""Validates SQL syntax using sqlparse."""
|
75 |
-
parsed_query = sqlparse.parse(query)
|
76 |
-
return len(parsed_query) > 0
|
77 |
-
|
78 |
-
# Step 7: Generate SQL query based on user input and run it with LangChain SQL Agent
|
79 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
80 |
if user_prompt:
|
81 |
try:
|
82 |
-
#
|
83 |
column_hints = f" Use only these columns: {', '.join(valid_columns)}"
|
84 |
prompt_with_columns = user_prompt + column_hints
|
85 |
|
86 |
-
#
|
87 |
-
context = rag_chain.
|
88 |
st.write(f"Retrieved Context: {context}")
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
# Step 10: Generate SQL query using SQL agent
|
94 |
-
generated_sql = sql_agent.run(f"{user_prompt} {context}")
|
95 |
-
|
96 |
-
# Debug: Display generated SQL query for inspection
|
97 |
st.write(f"Generated SQL Query: {generated_sql}")
|
98 |
|
99 |
-
#
|
100 |
if not validate_sql_with_sqlparse(generated_sql):
|
101 |
st.write("Generated SQL is not valid.")
|
102 |
elif not validate_sql(generated_sql, valid_columns):
|
103 |
st.write("Generated SQL references invalid columns.")
|
104 |
else:
|
105 |
-
# Step 12: Execute SQL query
|
106 |
result = pd.read_sql(generated_sql, conn)
|
107 |
st.write("Query Results:")
|
108 |
st.dataframe(result)
|
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
+
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbedding
|
7 |
+
from langchain.agents import create_sql_agent
|
8 |
+
from langchain.sql_database import SQLDatabase
|
|
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain.chains import RetrievalQA
|
11 |
+
from langchain_community.document_loaders import CSVLoader
|
12 |
+
from langchain.prompts import ChatPromptTemplate, FewShotPromptTemplate
|
13 |
+
from langchain_core.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
14 |
import sqlparse
|
15 |
import logging
|
16 |
|
17 |
+
# Load environment variables for Azure OpenAI
|
18 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
19 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
20 |
+
endpoint = os.getenv("azure_endpoint")
|
21 |
+
api_type = os.getenv("OPENAI_API_TYPE")
|
22 |
+
api_version = os.getenv("OPENAI_API_VERSION")
|
23 |
+
|
24 |
+
# Models
|
25 |
+
chat_model = os.getenv("chat_model")
|
26 |
+
embed_model = os.getenv("embed_model")
|
27 |
+
chat_deployment = os.getenv("chat_deployment")
|
28 |
+
embed_deployment = os.getenv("embed_deployment")
|
29 |
+
|
30 |
+
# Load CSV file for data
|
31 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
32 |
if csv_file is None:
|
33 |
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
|
|
37 |
st.write(f"Data Preview ({csv_file.name}):")
|
38 |
st.dataframe(data.head())
|
39 |
|
40 |
+
# Use a persistent SQLite database instead of in-memory
|
41 |
db_file = 'my_database.db'
|
42 |
conn = sqlite3.connect(db_file)
|
43 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
|
|
45 |
|
46 |
# SQL table metadata (for validation and schema)
|
47 |
valid_columns = list(data.columns)
|
|
|
|
|
48 |
st.write(f"Valid columns: {valid_columns}")
|
49 |
|
50 |
+
# Set up the SQL Database for LangChain with AzureOpenAI configuration
|
51 |
+
llm = AzureChatOpenAI(
|
52 |
+
temperature=0,
|
53 |
+
model=chat_model,
|
54 |
+
deployment_name=chat_deployment,
|
55 |
+
api_key=api_key,
|
56 |
+
azure_endpoint=endpoint,
|
57 |
+
api_version=api_version
|
58 |
+
)
|
59 |
db = SQLDatabase.from_uri(f'sqlite:///{db_file}')
|
60 |
+
db.raw_connection = conn
|
61 |
|
62 |
+
# Create the SQL agent with prompt and toolkit for SQL querying
|
63 |
sql_agent = create_sql_agent(
|
64 |
+
llm=llm,
|
65 |
db=db,
|
66 |
verbose=True,
|
67 |
max_iterations=20, # Increased iteration limit
|
68 |
max_execution_time=90 # Set timeout limit to 90 seconds
|
69 |
)
|
70 |
|
71 |
+
# Set up FAISS for retrieval
|
72 |
+
embeddings = AzureOpenAIEmbedding(
|
73 |
+
model=embed_model,
|
74 |
+
deployment_name=embed_deployment,
|
75 |
+
api_key=api_key,
|
76 |
+
azure_endpoint=endpoint,
|
77 |
+
api_version=api_version
|
78 |
+
)
|
79 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
80 |
documents = loader.load()
|
|
|
81 |
vector_store = FAISS.from_documents(documents, embeddings)
|
82 |
retriever = vector_store.as_retriever()
|
83 |
+
rag_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Insight extraction and SQL query generation
|
|
|
|
|
|
|
|
|
|
|
86 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
87 |
if user_prompt:
|
88 |
try:
|
89 |
+
# Add column hints to the user prompt
|
90 |
column_hints = f" Use only these columns: {', '.join(valid_columns)}"
|
91 |
prompt_with_columns = user_prompt + column_hints
|
92 |
|
93 |
+
# Retrieve context using FAISS and RAG
|
94 |
+
context = rag_chain.run(prompt_with_columns)
|
95 |
st.write(f"Retrieved Context: {context}")
|
96 |
|
97 |
+
# Generate SQL query using SQL agent
|
98 |
+
generated_sql = sql_agent.run(f"{prompt_with_columns} {context}")
|
|
|
|
|
|
|
|
|
|
|
99 |
st.write(f"Generated SQL Query: {generated_sql}")
|
100 |
|
101 |
+
# Validate SQL query and execute
|
102 |
if not validate_sql_with_sqlparse(generated_sql):
|
103 |
st.write("Generated SQL is not valid.")
|
104 |
elif not validate_sql(generated_sql, valid_columns):
|
105 |
st.write("Generated SQL references invalid columns.")
|
106 |
else:
|
|
|
107 |
result = pd.read_sql(generated_sql, conn)
|
108 |
st.write("Query Results:")
|
109 |
st.dataframe(result)
|