Spaces:
Running
Running
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,69 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
import sqlite3
|
6 |
from langchain import OpenAI, LLMChain, PromptTemplate
|
|
|
7 |
import sqlparse
|
8 |
import logging
|
|
|
9 |
from sklearn.linear_model import LinearRegression
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
from sklearn.metrics import mean_squared_error, r2_score
|
12 |
-
import statsmodels.api as sm
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Configure logging
|
17 |
-
logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
-
|
19 |
-
# Step 1: Load the dataset
|
20 |
-
def load_data():
|
21 |
-
st.header("Select or Upload a Dataset")
|
22 |
-
|
23 |
-
dataset_options = {
|
24 |
-
"Default Dataset": "default_data.csv",
|
25 |
-
# Add more datasets as needed
|
26 |
-
"Upload Your Own Dataset": None
|
27 |
-
}
|
28 |
-
|
29 |
-
selected_option = st.selectbox("Choose a dataset:", list(dataset_options.keys()))
|
30 |
-
|
31 |
-
if selected_option == "Upload Your Own Dataset":
|
32 |
-
uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"])
|
33 |
-
if uploaded_file is not None:
|
34 |
-
data = pd.read_csv(uploaded_file)
|
35 |
-
st.success("Data successfully loaded!")
|
36 |
-
return data
|
37 |
-
else:
|
38 |
-
st.info("Please upload a CSV file to proceed.")
|
39 |
-
return None
|
40 |
-
else:
|
41 |
-
file_path = dataset_options[selected_option]
|
42 |
-
if os.path.exists(file_path):
|
43 |
-
data = pd.read_csv(file_path)
|
44 |
-
st.success(f"'{selected_option}' successfully loaded!")
|
45 |
-
return data
|
46 |
-
else:
|
47 |
-
st.error(f"File '{file_path}' not found.")
|
48 |
-
return None
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
else:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
template = """
|
63 |
-
You are an expert data scientist
|
64 |
|
65 |
Instructions:
|
66 |
|
67 |
- If the question involves data retrieval or simple aggregations, generate a SQL query.
|
68 |
-
- If the question requires statistical analysis
|
69 |
-
- If the question involves predictions, modeling, or recommendations, generate a Python code snippet using scikit-learn or pandas.
|
70 |
- Ensure that you only use the columns provided.
|
71 |
- Do not include any import statements in the code.
|
72 |
-
-
|
|
|
73 |
|
74 |
Question: {question}
|
75 |
|
@@ -79,125 +73,77 @@ Valid columns: {columns}
|
|
79 |
|
80 |
Response:
|
81 |
"""
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# Append user message to history
|
141 |
-
st.session_state.history.append({"role": "user", "content": user_prompt})
|
142 |
-
|
143 |
-
if "columns" in user_prompt.lower():
|
144 |
-
assistant_response = f"The columns are: {', '.join(valid_columns)}"
|
145 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
146 |
else:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
st.write(f"**Generated Code:**\n```python\n{code}\n```")
|
158 |
-
try:
|
159 |
-
result = execute_code(code)
|
160 |
-
assistant_response = "Result:"
|
161 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
162 |
-
st.session_state.history.append({"role": "assistant", "content": result})
|
163 |
-
except Exception as e:
|
164 |
-
logging.error(f"An error occurred during code execution: {e}")
|
165 |
-
assistant_response = f"Error executing code: {e}"
|
166 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
167 |
else:
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
# Reset the user_input in session state
|
177 |
-
st.session_state['user_input'] = ''
|
178 |
-
|
179 |
-
# Initialize session state variables
|
180 |
-
if 'history' not in st.session_state:
|
181 |
-
st.session_state.history = []
|
182 |
-
|
183 |
-
if 'user_input' not in st.session_state:
|
184 |
-
st.session_state['user_input'] = ''
|
185 |
-
|
186 |
-
|
187 |
-
# Display the conversation history
|
188 |
-
for message in st.session_state.history:
|
189 |
-
if message['role'] == 'user':
|
190 |
-
st.markdown(f"**User:** {message['content']}")
|
191 |
-
elif message['role'] == 'assistant':
|
192 |
-
content = message['content']
|
193 |
-
if isinstance(content, pd.DataFrame):
|
194 |
-
st.markdown("**Assistant:** Here are the results:")
|
195 |
-
st.dataframe(content)
|
196 |
-
elif isinstance(content, (int, float, str, list, dict)):
|
197 |
-
st.markdown(f"**Assistant:** {content}")
|
198 |
-
else:
|
199 |
-
st.markdown(f"**Assistant:** {content}")
|
200 |
-
|
201 |
-
# Place the text input after displaying the conversation
|
202 |
-
st.text_input("Enter your question:", key='user_input', on_change=process_input)
|
203 |
-
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
|
|
4 |
import sqlite3
|
5 |
from langchain import OpenAI, LLMChain, PromptTemplate
|
6 |
+
from langchain_community.utilities import SQLDatabase
|
7 |
import sqlparse
|
8 |
import logging
|
9 |
+
from sql_metadata import Parser # Added import
|
10 |
from sklearn.linear_model import LinearRegression
|
11 |
from sklearn.model_selection import train_test_split
|
12 |
from sklearn.metrics import mean_squared_error, r2_score
|
13 |
+
import statsmodels.api as sm
|
14 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# OpenAI API key (ensure it is securely stored)
|
17 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
18 |
|
19 |
+
# Step 1: Upload CSV data file (or use default)
|
20 |
+
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
21 |
+
if csv_file is None:
|
22 |
+
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
23 |
+
st.write("Using default_data.csv file.")
|
24 |
else:
|
25 |
+
data = pd.read_csv(csv_file)
|
26 |
+
st.write(f"Data Preview ({csv_file.name}):")
|
27 |
+
st.dataframe(data.head())
|
28 |
+
|
29 |
+
# Step 2: Load CSV data into a persistent SQLite database
|
30 |
+
db_file = 'my_database.db'
|
31 |
+
conn = sqlite3.connect(db_file)
|
32 |
+
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
33 |
+
data.to_sql(table_name, conn, index=False, if_exists='replace')
|
34 |
+
|
35 |
+
# SQL table metadata (for validation and schema)
|
36 |
+
valid_columns = list(data.columns)
|
37 |
+
st.write(f"Valid columns: {valid_columns}")
|
38 |
+
|
39 |
+
# Step 3: Define SQL validation helpers
|
40 |
+
def validate_sql(query, valid_columns):
|
41 |
+
"""Validates the SQL query by ensuring it references only valid columns."""
|
42 |
+
parser = Parser(query)
|
43 |
+
columns_in_query = parser.columns
|
44 |
+
for column in columns_in_query:
|
45 |
+
if column not in valid_columns:
|
46 |
+
st.write(f"Invalid column detected: {column}")
|
47 |
+
return False
|
48 |
+
return True
|
49 |
+
|
50 |
+
def validate_sql_with_sqlparse(query):
|
51 |
+
"""Validates SQL syntax using sqlparse."""
|
52 |
+
parsed_query = sqlparse.parse(query)
|
53 |
+
return len(parsed_query) > 0
|
54 |
+
|
55 |
+
# Step 4: Set up the LLM Chain to generate SQL queries or Python code
|
56 |
template = """
|
57 |
+
You are an expert data scientist. Given a natural language question, the name of the table, and a list of valid columns, decide whether to generate a SQL query to retrieve data or a Python code snippet to perform statistical analysis, time series analysis, or build a simple machine learning model.
|
58 |
|
59 |
Instructions:
|
60 |
|
61 |
- If the question involves data retrieval or simple aggregations, generate a SQL query.
|
62 |
+
- If the question requires statistical analysis, time series analysis, or machine learning, generate a Python code snippet using pandas, numpy, statsmodels, or scikit-learn.
|
|
|
63 |
- Ensure that you only use the columns provided.
|
64 |
- Do not include any import statements in the code.
|
65 |
+
- For SQL queries, provide the query directly.
|
66 |
+
- For Python code, provide the code between <CODE> and </CODE> tags.
|
67 |
|
68 |
Question: {question}
|
69 |
|
|
|
73 |
|
74 |
Response:
|
75 |
"""
|
|
|
|
|
|
|
|
|
76 |
prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
|
77 |
+
sql_generation_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
|
78 |
+
|
79 |
+
# Step 5: Generate SQL query or Python code based on user input
|
80 |
+
user_prompt = st.text_input("Enter your natural language prompt:")
|
81 |
+
if user_prompt:
|
82 |
+
try:
|
83 |
+
# Step 6: Adjust the logic to handle "what are the columns" query
|
84 |
+
if "columns" in user_prompt.lower():
|
85 |
+
# Custom logic to return columns
|
86 |
+
st.write(f"The columns are: {', '.join(valid_columns)}")
|
87 |
+
else:
|
88 |
+
columns = ', '.join(valid_columns)
|
89 |
+
response = sql_generation_chain.run({'question': user_prompt, 'table_name': table_name, 'columns': columns})
|
90 |
+
|
91 |
+
# Check if the response contains Python code
|
92 |
+
if '<CODE>' in response and '</CODE>' in response:
|
93 |
+
# Extract code between <CODE> and </CODE>
|
94 |
+
start_index = response.find('<CODE>') + len('<CODE>')
|
95 |
+
end_index = response.find('</CODE>')
|
96 |
+
code = response[start_index:end_index].strip()
|
97 |
+
|
98 |
+
# Optionally display the code
|
99 |
+
# st.write("Generated Python Code:")
|
100 |
+
# st.code(code, language='python')
|
101 |
+
|
102 |
+
# Execute the code safely
|
103 |
+
try:
|
104 |
+
# Prepare the local namespace
|
105 |
+
local_vars = {
|
106 |
+
'pd': pd,
|
107 |
+
'np': np,
|
108 |
+
'data': data.copy(),
|
109 |
+
'result': None,
|
110 |
+
'LinearRegression': LinearRegression,
|
111 |
+
'train_test_split': train_test_split,
|
112 |
+
'mean_squared_error': mean_squared_error,
|
113 |
+
'r2_score': r2_score,
|
114 |
+
'sm': sm
|
115 |
+
}
|
116 |
+
exec(code, {}, local_vars)
|
117 |
+
result = local_vars.get('result')
|
118 |
+
|
119 |
+
if result is not None:
|
120 |
+
st.write("Result:")
|
121 |
+
if isinstance(result, pd.DataFrame):
|
122 |
+
st.dataframe(result)
|
123 |
+
else:
|
124 |
+
st.write(result)
|
125 |
+
else:
|
126 |
+
st.write("Code executed successfully.")
|
127 |
+
except Exception as e:
|
128 |
+
logging.error(f"An error occurred during code execution: {e}")
|
129 |
+
st.write(f"Error executing code: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
else:
|
131 |
+
# Assume it's a SQL query
|
132 |
+
generated_sql = response.strip()
|
133 |
+
# Optionally display the generated SQL query
|
134 |
+
# st.write(f"Generated SQL Query:\n{generated_sql}")
|
135 |
+
|
136 |
+
# Step 7: Validate SQL query
|
137 |
+
if not validate_sql_with_sqlparse(generated_sql):
|
138 |
+
st.write("Generated SQL is not valid.")
|
139 |
+
elif not validate_sql(generated_sql, valid_columns):
|
140 |
+
st.write("Generated SQL references invalid columns.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
else:
|
142 |
+
# Step 8: Execute SQL query
|
143 |
+
result = pd.read_sql_query(generated_sql, conn)
|
144 |
+
st.write("Query Results:")
|
145 |
+
st.dataframe(result)
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
logging.error(f"An error occurred: {e}")
|
149 |
+
st.write(f"Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|