Ari commited on
Commit
cd60664
·
verified ·
1 Parent(s): f7a9fb8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -171
app.py CHANGED
@@ -1,75 +1,69 @@
1
  import os
2
  import streamlit as st
3
  import pandas as pd
4
- import numpy as np
5
  import sqlite3
6
  from langchain import OpenAI, LLMChain, PromptTemplate
 
7
  import sqlparse
8
  import logging
 
9
  from sklearn.linear_model import LinearRegression
10
  from sklearn.model_selection import train_test_split
11
  from sklearn.metrics import mean_squared_error, r2_score
12
- import statsmodels.api as sm # For time series analysis
13
- from sklearn.metrics.pairwise import cosine_similarity # For recommendations
14
-
15
-
16
- # Configure logging
17
- logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')
18
-
19
- # Step 1: Load the dataset
20
- def load_data():
21
- st.header("Select or Upload a Dataset")
22
-
23
- dataset_options = {
24
- "Default Dataset": "default_data.csv",
25
- # Add more datasets as needed
26
- "Upload Your Own Dataset": None
27
- }
28
-
29
- selected_option = st.selectbox("Choose a dataset:", list(dataset_options.keys()))
30
-
31
- if selected_option == "Upload Your Own Dataset":
32
- uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"])
33
- if uploaded_file is not None:
34
- data = pd.read_csv(uploaded_file)
35
- st.success("Data successfully loaded!")
36
- return data
37
- else:
38
- st.info("Please upload a CSV file to proceed.")
39
- return None
40
- else:
41
- file_path = dataset_options[selected_option]
42
- if os.path.exists(file_path):
43
- data = pd.read_csv(file_path)
44
- st.success(f"'{selected_option}' successfully loaded!")
45
- return data
46
- else:
47
- st.error(f"File '{file_path}' not found.")
48
- return None
49
 
50
- data = load_data()
 
51
 
52
- if data is not None:
53
- table_name = "selected_table" # Default table name
54
- valid_columns = list(data.columns)
 
 
55
  else:
56
- st.stop() # Stop the script if data is not loaded
57
-
58
- # Initialize the LLM
59
- llm = OpenAI(temperature=0)
60
-
61
- # Prompt Engineering
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  template = """
63
- You are an expert data scientist assistant. Given a natural language question, the name of the table, and a list of valid columns, generate code that answers the question.
64
 
65
  Instructions:
66
 
67
  - If the question involves data retrieval or simple aggregations, generate a SQL query.
68
- - If the question requires statistical analysis or time series analysis, generate a Python code snippet using pandas, numpy, and statsmodels.
69
- - If the question involves predictions, modeling, or recommendations, generate a Python code snippet using scikit-learn or pandas.
70
  - Ensure that you only use the columns provided.
71
  - Do not include any import statements in the code.
72
- - Provide the code between <CODE> and </CODE> tags.
 
73
 
74
  Question: {question}
75
 
@@ -79,125 +73,77 @@ Valid columns: {columns}
79
 
80
  Response:
81
  """
82
-
83
-
84
-
85
-
86
  prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
87
-
88
- # Set up the LLM Chain
89
- sql_generation_chain = LLMChain(llm=llm, prompt=prompt)
90
-
91
- # Helper functions
92
- def extract_code(response):
93
- """Extracts code enclosed between <CODE> and </CODE> tags."""
94
- import re
95
- pattern = r"<CODE>(.*?)</CODE>"
96
- match = re.search(pattern, response, re.DOTALL)
97
- if match:
98
- return match.group(1).strip()
99
- else:
100
- return None
101
-
102
- def execute_code(code):
103
- """Executes the generated code and returns the result."""
104
- if code.strip().lower().startswith('select'):
105
- # It's a SQL query
106
- conn = sqlite3.connect(':memory:')
107
- data.to_sql(table_name, conn, index=False)
108
- try:
109
- result = pd.read_sql_query(code, conn)
110
- conn.close()
111
- return result
112
- except Exception as e:
113
- conn.close()
114
- raise e
115
- else:
116
- # It's Python code
117
- local_vars = {
118
- 'pd': pd,
119
- 'np': np,
120
- 'data': data.copy(),
121
- 'result': None,
122
- 'LinearRegression': LinearRegression,
123
- 'train_test_split': train_test_split,
124
- 'mean_squared_error': mean_squared_error,
125
- 'r2_score': r2_score,
126
- 'sm': sm, # Added statsmodels
127
- 'cosine_similarity': cosine_similarity # Added cosine_similarity
128
- }
129
-
130
- exec(code, {}, local_vars)
131
- result = local_vars.get('result')
132
- return result
133
-
134
- # Process user input
135
- def process_input():
136
- user_prompt = st.session_state['user_input']
137
-
138
- if user_prompt:
139
- try:
140
- # Append user message to history
141
- st.session_state.history.append({"role": "user", "content": user_prompt})
142
-
143
- if "columns" in user_prompt.lower():
144
- assistant_response = f"The columns are: {', '.join(valid_columns)}"
145
- st.session_state.history.append({"role": "assistant", "content": assistant_response})
146
  else:
147
- columns = ', '.join(valid_columns)
148
- response = sql_generation_chain.run({
149
- 'question': user_prompt,
150
- 'table_name': table_name,
151
- 'columns': columns
152
- })
153
-
154
- # Extract code from response
155
- code = extract_code(response)
156
- if code:
157
- st.write(f"**Generated Code:**\n```python\n{code}\n```")
158
- try:
159
- result = execute_code(code)
160
- assistant_response = "Result:"
161
- st.session_state.history.append({"role": "assistant", "content": assistant_response})
162
- st.session_state.history.append({"role": "assistant", "content": result})
163
- except Exception as e:
164
- logging.error(f"An error occurred during code execution: {e}")
165
- assistant_response = f"Error executing code: {e}"
166
- st.session_state.history.append({"role": "assistant", "content": assistant_response})
167
  else:
168
- assistant_response = response.strip()
169
- st.session_state.history.append({"role": "assistant", "content": assistant_response})
170
-
171
- except Exception as e:
172
- logging.error(f"An error occurred: {e}")
173
- assistant_response = f"Error: {e}"
174
- st.session_state.history.append({"role": "assistant", "content": assistant_response})
175
-
176
- # Reset the user_input in session state
177
- st.session_state['user_input'] = ''
178
-
179
- # Initialize session state variables
180
- if 'history' not in st.session_state:
181
- st.session_state.history = []
182
-
183
- if 'user_input' not in st.session_state:
184
- st.session_state['user_input'] = ''
185
-
186
-
187
- # Display the conversation history
188
- for message in st.session_state.history:
189
- if message['role'] == 'user':
190
- st.markdown(f"**User:** {message['content']}")
191
- elif message['role'] == 'assistant':
192
- content = message['content']
193
- if isinstance(content, pd.DataFrame):
194
- st.markdown("**Assistant:** Here are the results:")
195
- st.dataframe(content)
196
- elif isinstance(content, (int, float, str, list, dict)):
197
- st.markdown(f"**Assistant:** {content}")
198
- else:
199
- st.markdown(f"**Assistant:** {content}")
200
-
201
- # Place the text input after displaying the conversation
202
- st.text_input("Enter your question:", key='user_input', on_change=process_input)
203
-
 
1
  import os
2
  import streamlit as st
3
  import pandas as pd
 
4
  import sqlite3
5
  from langchain import OpenAI, LLMChain, PromptTemplate
6
+ from langchain_community.utilities import SQLDatabase
7
  import sqlparse
8
  import logging
9
+ from sql_metadata import Parser # Added import
10
  from sklearn.linear_model import LinearRegression
11
  from sklearn.model_selection import train_test_split
12
  from sklearn.metrics import mean_squared_error, r2_score
13
+ import statsmodels.api as sm
14
+ import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # OpenAI API key (ensure it is securely stored)
17
+ openai_api_key = os.getenv("OPENAI_API_KEY")
18
 
19
+ # Step 1: Upload CSV data file (or use default)
20
+ csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
21
+ if csv_file is None:
22
+ data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
23
+ st.write("Using default_data.csv file.")
24
  else:
25
+ data = pd.read_csv(csv_file)
26
+ st.write(f"Data Preview ({csv_file.name}):")
27
+ st.dataframe(data.head())
28
+
29
+ # Step 2: Load CSV data into a persistent SQLite database
30
+ db_file = 'my_database.db'
31
+ conn = sqlite3.connect(db_file)
32
+ table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
33
+ data.to_sql(table_name, conn, index=False, if_exists='replace')
34
+
35
+ # SQL table metadata (for validation and schema)
36
+ valid_columns = list(data.columns)
37
+ st.write(f"Valid columns: {valid_columns}")
38
+
39
+ # Step 3: Define SQL validation helpers
40
+ def validate_sql(query, valid_columns):
41
+ """Validates the SQL query by ensuring it references only valid columns."""
42
+ parser = Parser(query)
43
+ columns_in_query = parser.columns
44
+ for column in columns_in_query:
45
+ if column not in valid_columns:
46
+ st.write(f"Invalid column detected: {column}")
47
+ return False
48
+ return True
49
+
50
+ def validate_sql_with_sqlparse(query):
51
+ """Validates SQL syntax using sqlparse."""
52
+ parsed_query = sqlparse.parse(query)
53
+ return len(parsed_query) > 0
54
+
55
+ # Step 4: Set up the LLM Chain to generate SQL queries or Python code
56
  template = """
57
+ You are an expert data scientist. Given a natural language question, the name of the table, and a list of valid columns, decide whether to generate a SQL query to retrieve data or a Python code snippet to perform statistical analysis, time series analysis, or build a simple machine learning model.
58
 
59
  Instructions:
60
 
61
  - If the question involves data retrieval or simple aggregations, generate a SQL query.
62
+ - If the question requires statistical analysis, time series analysis, or machine learning, generate a Python code snippet using pandas, numpy, statsmodels, or scikit-learn.
 
63
  - Ensure that you only use the columns provided.
64
  - Do not include any import statements in the code.
65
+ - For SQL queries, provide the query directly.
66
+ - For Python code, provide the code between <CODE> and </CODE> tags.
67
 
68
  Question: {question}
69
 
 
73
 
74
  Response:
75
  """
 
 
 
 
76
  prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
77
+ sql_generation_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
78
+
79
+ # Step 5: Generate SQL query or Python code based on user input
80
+ user_prompt = st.text_input("Enter your natural language prompt:")
81
+ if user_prompt:
82
+ try:
83
+ # Step 6: Adjust the logic to handle "what are the columns" query
84
+ if "columns" in user_prompt.lower():
85
+ # Custom logic to return columns
86
+ st.write(f"The columns are: {', '.join(valid_columns)}")
87
+ else:
88
+ columns = ', '.join(valid_columns)
89
+ response = sql_generation_chain.run({'question': user_prompt, 'table_name': table_name, 'columns': columns})
90
+
91
+ # Check if the response contains Python code
92
+ if '<CODE>' in response and '</CODE>' in response:
93
+ # Extract code between <CODE> and </CODE>
94
+ start_index = response.find('<CODE>') + len('<CODE>')
95
+ end_index = response.find('</CODE>')
96
+ code = response[start_index:end_index].strip()
97
+
98
+ # Optionally display the code
99
+ # st.write("Generated Python Code:")
100
+ # st.code(code, language='python')
101
+
102
+ # Execute the code safely
103
+ try:
104
+ # Prepare the local namespace
105
+ local_vars = {
106
+ 'pd': pd,
107
+ 'np': np,
108
+ 'data': data.copy(),
109
+ 'result': None,
110
+ 'LinearRegression': LinearRegression,
111
+ 'train_test_split': train_test_split,
112
+ 'mean_squared_error': mean_squared_error,
113
+ 'r2_score': r2_score,
114
+ 'sm': sm
115
+ }
116
+ exec(code, {}, local_vars)
117
+ result = local_vars.get('result')
118
+
119
+ if result is not None:
120
+ st.write("Result:")
121
+ if isinstance(result, pd.DataFrame):
122
+ st.dataframe(result)
123
+ else:
124
+ st.write(result)
125
+ else:
126
+ st.write("Code executed successfully.")
127
+ except Exception as e:
128
+ logging.error(f"An error occurred during code execution: {e}")
129
+ st.write(f"Error executing code: {e}")
 
 
 
 
 
 
130
  else:
131
+ # Assume it's a SQL query
132
+ generated_sql = response.strip()
133
+ # Optionally display the generated SQL query
134
+ # st.write(f"Generated SQL Query:\n{generated_sql}")
135
+
136
+ # Step 7: Validate SQL query
137
+ if not validate_sql_with_sqlparse(generated_sql):
138
+ st.write("Generated SQL is not valid.")
139
+ elif not validate_sql(generated_sql, valid_columns):
140
+ st.write("Generated SQL references invalid columns.")
 
 
 
 
 
 
 
 
 
 
141
  else:
142
+ # Step 8: Execute SQL query
143
+ result = pd.read_sql_query(generated_sql, conn)
144
+ st.write("Query Results:")
145
+ st.dataframe(result)
146
+
147
+ except Exception as e:
148
+ logging.error(f"An error occurred: {e}")
149
+ st.write(f"Error: {e}")