Spaces:
Running
Running
Ari
commited on
Commit
•
e37eda0
1
Parent(s):
1d9b999
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
-
from transformers import pipeline # Using Hugging Face pipeline for memory-efficient loading
|
7 |
from langchain import OpenAI
|
8 |
from langchain_community.agent_toolkits.sql.base import create_sql_agent
|
9 |
from langchain_community.utilities import SQLDatabase
|
10 |
from langchain_community.document_loaders import CSVLoader
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import OpenAIEmbeddings
|
|
|
13 |
import sqlparse
|
|
|
14 |
|
15 |
# OpenAI API key (ensure it is securely stored)
|
16 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
@@ -27,33 +28,27 @@ else:
|
|
27 |
|
28 |
# Step 2: Load CSV data into SQLite database with dynamic table name
|
29 |
conn = sqlite3.connect(':memory:') # Use an in-memory SQLite database
|
30 |
-
|
31 |
-
# Dynamically name the table based on the uploaded file name or fallback to a default name
|
32 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
33 |
data.to_sql(table_name, conn, index=False, if_exists='replace')
|
34 |
|
35 |
# SQL table metadata (for validation and schema)
|
36 |
valid_columns = list(data.columns)
|
37 |
|
38 |
-
# Step 3: Use a
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
# Step 4:
|
42 |
-
embeddings = OpenAIEmbeddings()
|
43 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
44 |
documents = loader.load()
|
45 |
|
46 |
-
# Use FAISS for retrieval and document search
|
47 |
vector_store = FAISS.from_documents(documents, embeddings)
|
48 |
retriever = vector_store.as_retriever()
|
|
|
49 |
|
50 |
-
# Step 5:
|
51 |
-
openai_llm = OpenAI(temperature=0)
|
52 |
-
db = SQLDatabase.from_uri('sqlite:///:memory:') # Create an SQLite database for LangChain
|
53 |
-
db.raw_connection = conn # Use the in-memory connection for LangChain
|
54 |
-
sql_agent = create_sql_agent(openai_llm, db, verbose=True)
|
55 |
-
|
56 |
-
# Step 6: Validate and Execute the SQL Query
|
57 |
def validate_sql(query, valid_columns):
|
58 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
59 |
for column in valid_columns:
|
@@ -61,36 +56,34 @@ def validate_sql(query, valid_columns):
|
|
61 |
return False
|
62 |
return True
|
63 |
|
64 |
-
# Step 7: SQL Validation with `sqlparse`
|
65 |
def validate_sql_with_sqlparse(query):
|
66 |
"""Validates SQL syntax using sqlparse."""
|
67 |
parsed_query = sqlparse.parse(query)
|
68 |
return len(parsed_query) > 0
|
69 |
|
70 |
-
# Step
|
71 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
72 |
if user_prompt:
|
73 |
try:
|
74 |
-
# Step
|
75 |
-
|
76 |
-
st.write(f"Retrieved Context
|
77 |
-
|
78 |
-
# Step 10: Generate SQL query with OpenAI based on user prompt and retrieved context
|
79 |
-
query_input = f"{user_prompt} {rag_result}"
|
80 |
-
generated_sql = sql_agent.run(query_input)
|
81 |
|
|
|
|
|
82 |
st.write(f"Generated SQL Query: {generated_sql}")
|
83 |
|
84 |
-
# Step
|
85 |
if not validate_sql_with_sqlparse(generated_sql):
|
86 |
st.write("Generated SQL is not valid.")
|
87 |
elif not validate_sql(generated_sql, valid_columns):
|
88 |
st.write("Generated SQL references invalid columns.")
|
89 |
else:
|
90 |
-
# Step
|
91 |
result = pd.read_sql(generated_sql, conn)
|
92 |
st.write("Query Results:")
|
93 |
st.dataframe(result)
|
94 |
|
95 |
except Exception as e:
|
|
|
96 |
st.write(f"Error: {e}")
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
import openai
|
|
|
6 |
from langchain import OpenAI
|
7 |
from langchain_community.agent_toolkits.sql.base import create_sql_agent
|
8 |
from langchain_community.utilities import SQLDatabase
|
9 |
from langchain_community.document_loaders import CSVLoader
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
from langchain_community.embeddings import OpenAIEmbeddings
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
import sqlparse
|
14 |
+
import logging
|
15 |
|
16 |
# OpenAI API key (ensure it is securely stored)
|
17 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
28 |
|
29 |
# Step 2: Load CSV data into SQLite database with dynamic table name
|
30 |
conn = sqlite3.connect(':memory:') # Use an in-memory SQLite database
|
|
|
|
|
31 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
32 |
data.to_sql(table_name, conn, index=False, if_exists='replace')
|
33 |
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
36 |
|
37 |
+
# Step 3: Use a SQL Agent and setup LangChain's SQL Database connection
|
38 |
+
db = SQLDatabase.from_uri('sqlite:///:memory:')
|
39 |
+
db.raw_connection = conn # Use the in-memory connection for LangChain
|
40 |
+
sql_agent = create_sql_agent(OpenAI(temperature=0), db, verbose=True)
|
41 |
|
42 |
+
# Step 4: Use FAISS with RAG for context retrieval
|
43 |
+
embeddings = OpenAIEmbeddings()
|
44 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
45 |
documents = loader.load()
|
46 |
|
|
|
47 |
vector_store = FAISS.from_documents(documents, embeddings)
|
48 |
retriever = vector_store.as_retriever()
|
49 |
+
rag_chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), retriever=retriever)
|
50 |
|
51 |
+
# Step 5: Define SQL validation helpers
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def validate_sql(query, valid_columns):
|
53 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
54 |
for column in valid_columns:
|
|
|
56 |
return False
|
57 |
return True
|
58 |
|
|
|
59 |
def validate_sql_with_sqlparse(query):
|
60 |
"""Validates SQL syntax using sqlparse."""
|
61 |
parsed_query = sqlparse.parse(query)
|
62 |
return len(parsed_query) > 0
|
63 |
|
64 |
+
# Step 6: Generate SQL query based on user input and run it with LangChain SQL Agent
|
65 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
66 |
if user_prompt:
|
67 |
try:
|
68 |
+
# Step 7: Retrieve context using RAG
|
69 |
+
context = rag_chain.run(user_prompt)
|
70 |
+
st.write(f"Retrieved Context: {context}")
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Step 8: Generate SQL query using SQL agent
|
73 |
+
generated_sql = sql_agent.run(f"{user_prompt} {context}")
|
74 |
st.write(f"Generated SQL Query: {generated_sql}")
|
75 |
|
76 |
+
# Step 9: Validate SQL query
|
77 |
if not validate_sql_with_sqlparse(generated_sql):
|
78 |
st.write("Generated SQL is not valid.")
|
79 |
elif not validate_sql(generated_sql, valid_columns):
|
80 |
st.write("Generated SQL references invalid columns.")
|
81 |
else:
|
82 |
+
# Step 10: Execute SQL query
|
83 |
result = pd.read_sql(generated_sql, conn)
|
84 |
st.write("Query Results:")
|
85 |
st.dataframe(result)
|
86 |
|
87 |
except Exception as e:
|
88 |
+
logging.error(f"An error occurred: {e}")
|
89 |
st.write(f"Error: {e}")
|