Spaces:
Running
Running
arithescientist
commited on
Commit
•
f0e4f1b
1
Parent(s):
d0ab6a9
Update app.py
Browse files
app.py
CHANGED
@@ -2,16 +2,31 @@ import os
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
-
from langchain import OpenAI, LLMChain, PromptTemplate
|
6 |
-
import sqlparse
|
7 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Initialize conversation history
|
10 |
if 'history' not in st.session_state:
|
11 |
st.session_state.history = []
|
12 |
|
13 |
# OpenAI API key (ensure it is securely stored)
|
14 |
-
# You can set the API key in your environment variables or a .env file
|
15 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
16 |
|
17 |
# Check if the API key is set
|
@@ -20,7 +35,7 @@ if not openai_api_key:
|
|
20 |
st.stop()
|
21 |
|
22 |
# Step 1: Upload CSV data file (or use default)
|
23 |
-
st.title("Natural Language to SQL Query App
|
24 |
st.write("Upload a CSV file to get started, or use the default dataset.")
|
25 |
|
26 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
@@ -43,117 +58,64 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
43 |
valid_columns = list(data.columns)
|
44 |
st.write(f"Valid columns: {valid_columns}")
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"""
|
68 |
-
sql_prompt = PromptTemplate(template=sql_template, input_variables=['question', 'table_name', 'columns'])
|
69 |
-
llm = OpenAI(temperature=0, openai_api_key=openai_api_key, max_tokens = 180)
|
70 |
-
sql_generation_chain = LLMChain(llm=llm, prompt=sql_prompt)
|
71 |
-
|
72 |
-
# Insights Generation Chain
|
73 |
-
insights_template = """
|
74 |
-
You are an expert data scientist. Based on the user's question and the SQL query result provided below, generate a concise analysis that includes key data insights and actionable recommendations. Limit the response to a maximum of 150 words.
|
75 |
-
|
76 |
-
User's Question: {question}
|
77 |
-
|
78 |
-
SQL Query Result:
|
79 |
-
{result}
|
80 |
-
|
81 |
-
Concise Analysis (max 200 words):
|
82 |
-
"""
|
83 |
-
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
84 |
-
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
85 |
-
|
86 |
-
# General Insights and Recommendations Chain
|
87 |
-
general_insights_template = """
|
88 |
-
You are an expert data scientist. Based on the entire dataset provided below, generate a concise analysis with key insights and recommendations. Limit the response to 150 words.
|
89 |
-
|
90 |
-
Dataset Summary:
|
91 |
-
{dataset_summary}
|
92 |
-
|
93 |
-
Concise Analysis and Recommendations (max 150 words):
|
94 |
-
"""
|
95 |
-
general_insights_prompt = PromptTemplate(template=general_insights_template, input_variables=['dataset_summary'])
|
96 |
-
general_insights_chain = LLMChain(llm=llm, prompt=general_insights_prompt)
|
97 |
-
|
98 |
-
# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
|
99 |
-
def clean_sql_query(query):
|
100 |
-
"""Removes incorrect usage of COLLATE NOCASE from the SQL query."""
|
101 |
-
parsed = sqlparse.parse(query)
|
102 |
-
statements = []
|
103 |
-
for stmt in parsed:
|
104 |
-
tokens = []
|
105 |
-
idx = 0
|
106 |
-
while idx < len(stmt.tokens):
|
107 |
-
token = stmt.tokens[idx]
|
108 |
-
if (token.ttype is sqlparse.tokens.Keyword and token.value.upper() == 'COLLATE'):
|
109 |
-
# Check if the next token is 'NOCASE'
|
110 |
-
next_token = stmt.tokens[idx + 2] if idx + 2 < len(stmt.tokens) else None
|
111 |
-
if next_token and next_token.value.upper() == 'NOCASE':
|
112 |
-
# Skip 'COLLATE' and 'NOCASE' tokens
|
113 |
-
idx += 3 # Skip 'COLLATE', whitespace, 'NOCASE'
|
114 |
-
continue
|
115 |
-
tokens.append(token)
|
116 |
-
idx += 1
|
117 |
-
statements.append(''.join([str(t) for t in tokens]))
|
118 |
-
return ' '.join(statements)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
Dataset Summary:
|
150 |
-
"""
|
151 |
-
summary_prompt = PromptTemplate(template=summary_template, input_variables=['data'])
|
152 |
-
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
153 |
-
summary = summary_chain.run({'data': data.head().to_string(index=False)})
|
154 |
-
return summary
|
155 |
-
|
156 |
-
# Define the callback function
|
157 |
def process_input():
|
158 |
user_prompt = st.session_state['user_input']
|
159 |
|
@@ -162,77 +124,69 @@ def process_input():
|
|
162 |
# Append user message to history
|
163 |
st.session_state.history.append({"role": "user", "content": user_prompt})
|
164 |
|
165 |
-
#
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
if
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
172 |
-
elif category == 'SQL':
|
173 |
-
columns = ', '.join(valid_columns)
|
174 |
-
generated_sql = sql_generation_chain.run({
|
175 |
-
'question': user_prompt,
|
176 |
-
'table_name': table_name,
|
177 |
-
'columns': columns
|
178 |
-
}).strip()
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
'dataset_summary': dataset_summary
|
190 |
-
})
|
191 |
-
|
192 |
-
# Append the assistant's insights to the history
|
193 |
-
st.session_state.history.append({"role": "assistant", "content": general_insights})
|
194 |
else:
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
# Attempt to execute SQL query and handle exceptions
|
200 |
-
try:
|
201 |
-
result = pd.read_sql_query(cleaned_sql, conn)
|
202 |
-
|
203 |
-
if result.empty:
|
204 |
-
assistant_response = "The query returned no results. Please try a different question."
|
205 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
206 |
-
else:
|
207 |
-
# Convert the result to a string for the insights prompt
|
208 |
-
result_str = result.head(10).to_string(index=False) # Limit to first 10 rows
|
209 |
-
|
210 |
-
# Generate insights and recommendations based on the query result
|
211 |
-
insights = insights_chain.run({
|
212 |
-
'question': user_prompt,
|
213 |
-
'result': result_str
|
214 |
-
})
|
215 |
-
|
216 |
-
# Append the assistant's insights to the history
|
217 |
-
st.session_state.history.append({"role": "assistant", "content": insights})
|
218 |
-
# Append the result DataFrame to the history
|
219 |
-
st.session_state.history.append({"role": "assistant", "content": result})
|
220 |
-
except Exception as e:
|
221 |
-
logging.error(f"An error occurred during SQL execution: {e}")
|
222 |
-
assistant_response = f"Error executing SQL query: {e}"
|
223 |
-
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
224 |
-
else: # INSIGHTS category
|
225 |
-
# Generate dataset summary
|
226 |
-
dataset_summary = generate_dataset_summary(data)
|
227 |
-
|
228 |
-
# Generate general insights and recommendations
|
229 |
-
general_insights = general_insights_chain.run({
|
230 |
-
'dataset_summary': dataset_summary
|
231 |
-
})
|
232 |
-
|
233 |
-
# Append the assistant's insights to the history
|
234 |
-
st.session_state.history.append({"role": "assistant", "content": general_insights})
|
235 |
-
|
236 |
except Exception as e:
|
237 |
logging.error(f"An error occurred: {e}")
|
238 |
assistant_response = f"Error: {e}"
|
@@ -241,7 +195,7 @@ def process_input():
|
|
241 |
# Reset the user_input in session state
|
242 |
st.session_state['user_input'] = ''
|
243 |
|
244 |
-
# Display the conversation history
|
245 |
for message in st.session_state.history:
|
246 |
if message['role'] == 'user':
|
247 |
st.markdown(f"**User:** {message['content']}")
|
@@ -253,4 +207,4 @@ for message in st.session_state.history:
|
|
253 |
st.markdown(f"**Assistant:** {message['content']}")
|
254 |
|
255 |
# Place the input field at the bottom with the callback
|
256 |
-
st.text_input("Enter your message:", key='user_input', on_change=process_input)
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
|
|
|
|
5 |
import logging
|
6 |
+
from langchain.agents import create_sql_agent
|
7 |
+
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
|
8 |
+
from langchain.llms import OpenAI
|
9 |
+
from langchain.sql_database import SQLDatabase
|
10 |
+
from langchain.prompts import (
|
11 |
+
ChatPromptTemplate,
|
12 |
+
FewShotPromptTemplate,
|
13 |
+
PromptTemplate,
|
14 |
+
SystemMessagePromptTemplate,
|
15 |
+
HumanMessagePromptTemplate,
|
16 |
+
MessagesPlaceholder
|
17 |
+
)
|
18 |
+
from langchain.schema import HumanMessage
|
19 |
+
from langchain.chat_models import ChatOpenAI
|
20 |
+
from langchain.evaluation import load_evaluator
|
21 |
+
|
22 |
+
# Initialize logging
|
23 |
+
logging.basicConfig(level=logging.INFO)
|
24 |
|
25 |
# Initialize conversation history
|
26 |
if 'history' not in st.session_state:
|
27 |
st.session_state.history = []
|
28 |
|
29 |
# OpenAI API key (ensure it is securely stored)
|
|
|
30 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
31 |
|
32 |
# Check if the API key is set
|
|
|
35 |
st.stop()
|
36 |
|
37 |
# Step 1: Upload CSV data file (or use default)
|
38 |
+
st.title("Enhanced Natural Language to SQL Query App")
|
39 |
st.write("Upload a CSV file to get started, or use the default dataset.")
|
40 |
|
41 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
|
|
58 |
valid_columns = list(data.columns)
|
59 |
st.write(f"Valid columns: {valid_columns}")
|
60 |
|
61 |
+
# Create SQLDatabase instance with custom table info
|
62 |
+
engine = SQLDatabase.from_uri(f"sqlite:///{db_file}", include_tables=[table_name])
|
63 |
+
|
64 |
+
# Step 3: Define the few-shot examples for the prompt
|
65 |
+
few_shot_examples = [
|
66 |
+
{
|
67 |
+
"input": "What is the total revenue for each category?",
|
68 |
+
"query": f"SELECT category, SUM(revenue) FROM {table_name} GROUP BY category;"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"input": "Show the top 5 products by sales.",
|
72 |
+
"query": f"SELECT product_name, sales FROM {table_name} ORDER BY sales DESC LIMIT 5;"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"input": "How many orders were placed in the last month?",
|
76 |
+
"query": f"SELECT COUNT(*) FROM {table_name} WHERE order_date >= DATE('now', '-1 month');"
|
77 |
+
}
|
78 |
+
]
|
79 |
+
|
80 |
+
# Step 4: Define the prompt templates
|
81 |
+
system_prefix = """
|
82 |
+
You are an expert data analyst who can convert natural language questions into SQL queries.
|
83 |
+
Follow these guidelines:
|
84 |
+
1. Only use the columns and tables provided.
|
85 |
+
2. Use appropriate SQL syntax for SQLite.
|
86 |
+
3. Ensure string comparisons are case-insensitive.
|
87 |
+
4. Do not execute queries that could be harmful or unethical.
|
88 |
+
5. Provide clear and concise SQL queries.
|
89 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
few_shot_prompt = FewShotPromptTemplate(
|
92 |
+
example_prompt=PromptTemplate.from_template("Question: {input}\nSQL Query: {query}"),
|
93 |
+
examples=few_shot_examples,
|
94 |
+
prefix=system_prefix,
|
95 |
+
suffix="Question: {input}\nSQL Query:",
|
96 |
+
input_variables=["input"]
|
97 |
+
)
|
98 |
+
|
99 |
+
# Step 5: Initialize the LLM and toolkit
|
100 |
+
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
|
101 |
+
toolkit = SQLDatabaseToolkit(db=engine, llm=llm)
|
102 |
+
|
103 |
+
# Step 6: Create the agent
|
104 |
+
agent_prompt = ChatPromptTemplate.from_messages([
|
105 |
+
SystemMessagePromptTemplate(prompt=few_shot_prompt),
|
106 |
+
HumanMessagePromptTemplate.from_template("{input}")
|
107 |
+
])
|
108 |
+
|
109 |
+
sql_agent = create_sql_agent(
|
110 |
+
llm=llm,
|
111 |
+
toolkit=toolkit,
|
112 |
+
prompt=agent_prompt,
|
113 |
+
verbose=True,
|
114 |
+
agent_type="openai-functions",
|
115 |
+
max_iterations=5
|
116 |
+
)
|
117 |
+
|
118 |
+
# Step 7: Define the callback function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def process_input():
|
120 |
user_prompt = st.session_state['user_input']
|
121 |
|
|
|
124 |
# Append user message to history
|
125 |
st.session_state.history.append({"role": "user", "content": user_prompt})
|
126 |
|
127 |
+
# Use the agent to generate the SQL query
|
128 |
+
with st.spinner("Generating SQL query..."):
|
129 |
+
response = sql_agent.run(user_prompt)
|
130 |
+
|
131 |
+
# Check if the response contains SQL code
|
132 |
+
if "SELECT" in response.upper():
|
133 |
+
sql_query = response.strip()
|
134 |
+
logging.info(f"Generated SQL Query: {sql_query}")
|
135 |
+
|
136 |
+
# Attempt to execute SQL query and handle exceptions
|
137 |
+
try:
|
138 |
+
result = pd.read_sql_query(sql_query, conn)
|
139 |
+
|
140 |
+
if result.empty:
|
141 |
+
assistant_response = "The query returned no results. Please try a different question."
|
142 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
143 |
+
else:
|
144 |
+
# Limit the result to first 10 rows for display
|
145 |
+
result_display = result.head(10)
|
146 |
+
st.session_state.history.append({"role": "assistant", "content": "Here are the results:"})
|
147 |
+
st.session_state.history.append({"role": "assistant", "content": result_display})
|
148 |
+
|
149 |
+
# Generate insights based on the query result
|
150 |
+
insights_template = """
|
151 |
+
You are an expert data analyst. Based on the user's question and the SQL query result provided below, generate a concise analysis that includes key data insights and actionable recommendations. Limit the response to a maximum of 150 words.
|
152 |
+
|
153 |
+
User's Question: {question}
|
154 |
+
|
155 |
+
SQL Query Result:
|
156 |
+
{result}
|
157 |
+
|
158 |
+
Concise Analysis:
|
159 |
+
"""
|
160 |
+
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
161 |
+
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
162 |
+
|
163 |
+
result_str = result_display.to_string(index=False)
|
164 |
+
insights = insights_chain.run({'question': user_prompt, 'result': result_str})
|
165 |
+
|
166 |
+
# Append the assistant's insights to the history
|
167 |
+
st.session_state.history.append({"role": "assistant", "content": insights})
|
168 |
+
except Exception as e:
|
169 |
+
logging.error(f"An error occurred during SQL execution: {e}")
|
170 |
+
assistant_response = f"Error executing SQL query: {e}"
|
171 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
172 |
+
else:
|
173 |
+
# Handle responses that do not contain SQL queries
|
174 |
+
assistant_response = response
|
175 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
# Evaluate the response for harmful content
|
178 |
+
try:
|
179 |
+
evaluator = load_evaluator("harmful_content", llm=llm)
|
180 |
+
eval_result = evaluator.evaluate_strings(
|
181 |
+
input=user_prompt,
|
182 |
+
prediction=response
|
183 |
+
)
|
184 |
+
if eval_result['flagged']:
|
185 |
+
st.warning("The assistant's response may not be appropriate.")
|
|
|
|
|
|
|
|
|
|
|
186 |
else:
|
187 |
+
logging.info("Response evaluated as appropriate.")
|
188 |
+
except Exception as e:
|
189 |
+
logging.error(f"An error occurred during evaluation: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
except Exception as e:
|
191 |
logging.error(f"An error occurred: {e}")
|
192 |
assistant_response = f"Error: {e}"
|
|
|
195 |
# Reset the user_input in session state
|
196 |
st.session_state['user_input'] = ''
|
197 |
|
198 |
+
# Step 8: Display the conversation history
|
199 |
for message in st.session_state.history:
|
200 |
if message['role'] == 'user':
|
201 |
st.markdown(f"**User:** {message['content']}")
|
|
|
207 |
st.markdown(f"**Assistant:** {message['content']}")
|
208 |
|
209 |
# Place the input field at the bottom with the callback
|
210 |
+
st.text_input("Enter your message:", key='user_input', on_change=process_input)
|