import os import streamlit as st import pandas as pd import sqlite3 import openai from langchain_openai import AzureChatOpenAI from langchain_community.agent_toolkits.sql.base import create_sql_agent from langchain_community.utilities import SQLDatabase from langchain_community.document_loaders import CSVLoader from langchain_community.vectorstores import FAISS from langchain_openai.embeddings import AzureOpenAIEmbeddings from langchain.chains import RetrievalQA import sqlparse import logging from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Set up API credentials and environment variables api_key = os.getenv("OPENAI_API_KEY") azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") api_version = os.getenv("OPENAI_API_VERSION", "2023-05-15") # Set a default if not provided chat_model = os.getenv("CHAT_MODEL") chat_deployment = os.getenv("CHAT_DEPLOYMENT") embed_model = os.getenv("EMBED_MODEL") embed_deployment = os.getenv("EMBED_DEPLOYMENT") # Default to a specific endpoint if the environment variable is missing if not azure_endpoint: azure_endpoint = "https://.openai.azure.com" # Replace with your actual endpoint # OpenAI API key (ensure it is securely stored) openai.api_key = api_key # Initialize Azure OpenAI LLM (Language Model) llm = AzureChatOpenAI( temperature=0, model=chat_model, deployment_name=chat_deployment, api_key=api_key, azure_endpoint=azure_endpoint, api_version=api_version ) # Step 1: Upload CSV data file (or use default) csv_file = st.file_uploader("Upload your CSV file", type=["csv"]) if csv_file is None: data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded st.write("Using default data.csv file.") else: data = pd.read_csv(csv_file) st.write(f"Data Preview ({csv_file.name}):") st.dataframe(data.head()) # Step 2: Load CSV data into a persistent SQLite database # Use a persistent database file instead of in-memory to retain schema context db_file = 'my_database.db' conn = sqlite3.connect(db_file) table_name = csv_file.name.split('.')[0] if csv_file else "default_table" data.to_sql(table_name, conn, index=False, if_exists='replace') # SQL table metadata (for validation and schema) valid_columns = list(data.columns) # Debug: Display valid columns for user to verify st.write(f"Valid columns: {valid_columns}") # Step 3: Set up the SQL Database for LangChain db = SQLDatabase.from_uri(f'sqlite:///{db_file}') db.raw_connection = conn # Use the persistent database connection for LangChain # Step 4: Create the SQL agent with increased iteration and time limits sql_agent = create_sql_agent( llm, db=db, verbose=True, max_iterations=20, # Increased iteration limit max_execution_time=90 # Set timeout limit to 90 seconds ) # Step 5: Use FAISS with RAG for context retrieval embeddings = AzureOpenAIEmbeddings( model=embed_model, deployment_name=embed_deployment, azure_endpoint=azure_endpoint, api_key=api_key, api_version=api_version ) loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv") documents = loader.load() vector_store = FAISS.from_documents(documents, embeddings) retriever = vector_store.as_retriever() rag_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever) # Step 6: Define SQL validation helpers def validate_sql(query, valid_columns): """Validates the SQL query by ensuring it references only valid columns.""" parsed = sqlparse.parse(query) for token in parsed[0].tokens: if token.ttype is None: # If it's a column name column_name = str(token).strip() if column_name not in valid_columns: return False return True def validate_sql_with_sqlparse(query): """Validates SQL syntax using sqlparse.""" parsed_query = sqlparse.parse(query) return len(parsed_query) > 0 # Step 7: Generate SQL query based on user input and run it with LangChain SQL Agent user_prompt = st.text_input("Enter your natural language prompt:") if user_prompt: try: # Step 8: Add valid column names to the prompt column_hints = f" Use only these columns: {', '.join(valid_columns)}" prompt_with_columns = user_prompt + column_hints # Step 9: Retrieve context using RAG context = rag_chain.run(prompt_with_columns) st.write(f"Retrieved Context: {context}") # Step 10: Generate SQL query using SQL agent generated_sql = sql_agent.run(f"{prompt_with_columns} {context}") # Debug: Display generated SQL query for inspection st.write(f"Generated SQL Query: {generated_sql}") # Step 11: Validate SQL query if not validate_sql_with_sqlparse(generated_sql): st.write("Generated SQL is not valid.") elif not validate_sql(generated_sql, valid_columns): st.write("Generated SQL references invalid columns.") else: # Step 12: Execute SQL query result = pd.read_sql(generated_sql, conn) st.write("Query Results:") st.dataframe(result) except Exception as e: logging.error(f"An error occurred: {e}") st.write(f"Error: {e}")