Ari
Update app.py
8ebbde5 verified
raw
history blame
9.58 kB
import os
import streamlit as st
import pandas as pd
import sqlite3
from langchain import OpenAI, LLMChain, PromptTemplate
import sqlparse
import logging
# Initialize conversation history
if 'history' not in st.session_state:
st.session_state.history = []
# OpenAI API key (ensure it is securely stored)
# You can set the API key in your environment variables or a .env file
openai_api_key = os.getenv("OPENAI_API_KEY")
# Check if the API key is set
if not openai_api_key:
st.error("OpenAI API key is not set. Please set the OPENAI_API_KEY environment variable.")
st.stop()
# Step 1: Upload CSV data file (or use default)
st.title("Natural Language to SQL Query App with Dynamic Insights")
st.write("Upload a CSV file to get started, or use the default dataset.")
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
if csv_file is None:
data = pd.read_csv("default_data.csv") # Ensure this file exists in your working directory
st.write("Using default_data.csv file.")
table_name = "default_table"
else:
data = pd.read_csv(csv_file)
table_name = csv_file.name.split('.')[0]
st.write(f"Data Preview ({csv_file.name}):")
st.dataframe(data.head())
# Step 2: Load CSV data into a persistent SQLite database
db_file = 'my_database.db'
conn = sqlite3.connect(db_file)
data.to_sql(table_name, conn, index=False, if_exists='replace')
# SQL table metadata (for validation and schema)
valid_columns = list(data.columns)
st.write(f"Valid columns: {valid_columns}")
# Step 3: Set up the LLM Chains
# SQL Generation Chain
sql_template = """
You are an expert data scientist. Given a natural language question, the name of the table, and a list of valid columns, generate a valid SQL query that answers the question.
Ensure that:
- You only use the columns provided.
- When performing string comparisons in the WHERE clause, make them case-insensitive by using 'COLLATE NOCASE' or the LOWER() function.
- Do not use 'COLLATE NOCASE' in ORDER BY clauses unless sorting a string column.
- Do not apply 'COLLATE NOCASE' to numeric columns.
If the question is vague or open-ended and does not pertain to specific data retrieval, respond with "NO_SQL" to indicate that a SQL query should not be generated.
Question: {question}
Table name: {table_name}
Valid columns: {columns}
SQL Query:
"""
sql_prompt = PromptTemplate(template=sql_template, input_variables=['question', 'table_name', 'columns'])
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
sql_generation_chain = LLMChain(llm=llm, prompt=sql_prompt)
# Insights Generation Chain
insights_template = """
You are an expert data scientist. Based on the SQL query result provided below, generate a concise and informative analysis that includes specific data-driven insights.
SQL Query Result:
{result}
Analysis:
"""
insights_prompt = PromptTemplate(template=insights_template, input_variables=['result'])
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
# Recommendations Generation Chain
recommendations_template = """
You are an expert data scientist. Based on the SQL query result provided below, generate actionable recommendations for improving performance.
SQL Query Result:
{result}
Recommendations:
"""
recommendations_prompt = PromptTemplate(template=recommendations_template, input_variables=['result'])
recommendations_chain = LLMChain(llm=llm, prompt=recommendations_prompt)
# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
def clean_sql_query(query):
"""Removes incorrect usage of COLLATE NOCASE from the SQL query."""
parsed = sqlparse.parse(query)
statements = []
for stmt in parsed:
tokens = []
idx = 0
while idx < len(stmt.tokens):
token = stmt.tokens[idx]
if (token.ttype is sqlparse.tokens.Keyword and token.value.upper() == 'COLLATE'):
# Check if the next token is 'NOCASE'
next_token = stmt.tokens[idx + 2] if idx + 2 < len(stmt.tokens) else None
if next_token and next_token.value.upper() == 'NOCASE':
# Skip 'COLLATE' and 'NOCASE' tokens
idx += 3 # Skip 'COLLATE', whitespace, 'NOCASE'
continue
tokens.append(token)
idx += 1
statements.append(''.join([str(t) for t in tokens]))
return ' '.join(statements)
# Function to classify user query
def classify_query(question):
"""Classify the user query as either 'SQL' or 'INSIGHTS'."""
classification_template = """
You are an AI assistant that classifies user queries into two categories: 'SQL' for specific data retrieval queries and 'INSIGHTS' for general analytical queries.
Determine the appropriate category for the following user question.
Question: "{question}"
Category (SQL/INSIGHTS):
"""
classification_prompt = PromptTemplate(template=classification_template, input_variables=['question'])
classification_chain = LLMChain(llm=llm, prompt=classification_prompt)
category = classification_chain.run({'question': question}).strip().upper()
if category.startswith('SQL'):
return 'SQL'
else:
return 'INSIGHTS'
# Define the callback function
def process_input():
user_prompt = st.session_state['user_input']
if user_prompt:
try:
# Append user message to history
st.session_state.history.append({"role": "user", "content": user_prompt})
# Classify the user query
category = classify_query(user_prompt)
logging.info(f"User query classified as: {category}")
if "COLUMNS" in user_prompt.upper():
assistant_response = f"The columns are: {', '.join(valid_columns)}"
st.session_state.history.append({"role": "assistant", "content": assistant_response})
elif category == 'SQL':
columns = ', '.join(valid_columns)
generated_sql = sql_generation_chain.run({
'question': user_prompt,
'table_name': table_name,
'columns': columns
}).strip()
if generated_sql.upper() == "NO_SQL":
assistant_response = "This query is too vague for generating SQL. Please ask a more specific question."
st.session_state.history.append({"role": "assistant", "content": assistant_response})
else:
# Clean the SQL query
cleaned_sql = clean_sql_query(generated_sql)
logging.info(f"Generated SQL Query: {cleaned_sql}")
# Attempt to execute SQL query and handle exceptions
try:
result = pd.read_sql_query(cleaned_sql, conn)
if result.empty:
assistant_response = "The query returned no results. Please try a different question."
st.session_state.history.append({"role": "assistant", "content": assistant_response})
else:
# Convert the result to a string for the insights prompt
result_str = result.head(10).to_string(index=False) # Limit to first 10 rows
# Generate insights based on the query result
insights = insights_chain.run({
'result': result_str
})
# Display insights in a scrollable text area
st.text_area("Insights", value=insights, height=300)
# Append the result DataFrame to the history
st.session_state.history.append({"role": "assistant", "content": result})
except Exception as e:
logging.error(f"An error occurred during SQL execution: {e}")
assistant_response = f"Error executing SQL query: {e}"
st.session_state.history.append({"role": "assistant", "content": assistant_response})
else: # INSIGHTS category
if "recommendations" in user_prompt.lower():
# Generate recommendations based on the query result
dataset_summary = data.describe().to_string() # Summary for recommendations
recommendations = recommendations_chain.run({
'result': dataset_summary
})
# Display recommendations in a scrollable text area
st.text_area("Recommendations", value=recommendations, height=300)
else:
# Generate insights based on general insights (without recommendations)
dataset_summary = data.describe().to_string() # Summary for insights
insights = insights_chain.run({
'result': dataset_summary
})
# Display insights in a scrollable text area
st.text_area("Insights", value=insights, height=300)
except Exception as e:
logging.error(f"An error occurred: {e}")
assistant_response = f"Error: {e}"
st.session_state.history.append({"role": "assistant", "content": assistant_response})
# Reset the user_input in session state
st.session_state['user_input'] = ''