Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,90 +2,179 @@ import os
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
-
import
|
6 |
-
from langchain import OpenAI
|
7 |
-
from langchain_community.agent_toolkits.sql.base import create_sql_agent
|
8 |
-
from langchain_community.utilities import SQLDatabase
|
9 |
-
from langchain_community.document_loaders import CSVLoader
|
10 |
-
from langchain_community.vectorstores import FAISS
|
11 |
-
from langchain_community.embeddings import OpenAIEmbeddings
|
12 |
-
from langchain.chains import RetrievalQA
|
13 |
import sqlparse
|
14 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# OpenAI API key (ensure it is securely stored)
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Step 1: Upload CSV data file (or use default)
|
|
|
20 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
21 |
if csv_file is None:
|
22 |
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
23 |
-
st.write("Using
|
24 |
else:
|
25 |
data = pd.read_csv(csv_file)
|
26 |
st.write(f"Data Preview ({csv_file.name}):")
|
27 |
st.dataframe(data.head())
|
28 |
|
29 |
-
# Step 2: Load CSV data into SQLite database
|
30 |
-
|
|
|
31 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
32 |
data.to_sql(table_name, conn, index=False, if_exists='replace')
|
33 |
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
if
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
else:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
logging.error(f"An error occurred: {e}")
|
91 |
-
st.write(f"Error: {e}")
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
+
import numpy as np # For numerical operations
|
6 |
+
from langchain import OpenAI, LLMChain, PromptTemplate
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import sqlparse
|
8 |
import logging
|
9 |
+
from sklearn.linear_model import LinearRegression # For machine learning tasks
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
12 |
+
|
13 |
+
# Initialize conversation history
|
14 |
+
if 'history' not in st.session_state:
|
15 |
+
st.session_state.history = []
|
16 |
+
|
17 |
+
# Set up logging
|
18 |
+
logging.basicConfig(level=logging.ERROR)
|
19 |
|
20 |
# OpenAI API key (ensure it is securely stored)
|
21 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
22 |
+
|
23 |
+
# Set OpenAI API key for langchain
|
24 |
+
from langchain.llms import OpenAI as LangchainOpenAI
|
25 |
+
LangchainOpenAI.api_key = openai_api_key
|
26 |
|
27 |
# Step 1: Upload CSV data file (or use default)
|
28 |
+
st.title("Data Science Chatbot")
|
29 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
30 |
if csv_file is None:
|
31 |
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
32 |
+
st.write("Using default_data.csv file.")
|
33 |
else:
|
34 |
data = pd.read_csv(csv_file)
|
35 |
st.write(f"Data Preview ({csv_file.name}):")
|
36 |
st.dataframe(data.head())
|
37 |
|
38 |
+
# Step 2: Load CSV data into a persistent SQLite database
|
39 |
+
db_file = 'my_database.db'
|
40 |
+
conn = sqlite3.connect(db_file)
|
41 |
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
42 |
data.to_sql(table_name, conn, index=False, if_exists='replace')
|
43 |
|
44 |
# SQL table metadata (for validation and schema)
|
45 |
valid_columns = list(data.columns)
|
46 |
+
st.write(f"Valid columns: {valid_columns}")
|
47 |
+
|
48 |
+
# Step 3: Define helper functions
|
49 |
+
|
50 |
+
def extract_code(response):
|
51 |
+
"""Extracts code enclosed between <CODE> and </CODE> tags."""
|
52 |
+
import re
|
53 |
+
pattern = r"<CODE>(.*?)</CODE>"
|
54 |
+
match = re.search(pattern, response, re.DOTALL)
|
55 |
+
if match:
|
56 |
+
return match.group(1).strip()
|
57 |
+
else:
|
58 |
+
return None
|
59 |
+
|
60 |
+
# Step 4: Set up the LLM Chain to generate SQL queries or Python code
|
61 |
+
template = """
|
62 |
+
You are an expert data scientist assistant. Given a natural language question, the name of the table, and a list of valid columns, decide whether to generate a SQL query to retrieve data, perform statistical analysis, or build a simple machine learning model.
|
63 |
+
|
64 |
+
Instructions:
|
65 |
+
- If the question involves data retrieval or simple aggregations, generate a SQL query.
|
66 |
+
- If the question requires statistical analysis, generate a Python code snippet using pandas and numpy.
|
67 |
+
- If the question involves predictions or modeling, generate a Python code snippet using scikit-learn.
|
68 |
+
- Ensure that you only use the columns provided.
|
69 |
+
- Do not include any import statements in the code.
|
70 |
+
- For case-insensitive string comparisons in SQL, use either 'LOWER(column) = LOWER(value)' or 'column = value COLLATE NOCASE', but do not use both together.
|
71 |
+
- Provide the code between <CODE> and </CODE> tags.
|
72 |
+
|
73 |
+
Question: {question}
|
74 |
+
|
75 |
+
Table name: {table_name}
|
76 |
|
77 |
+
Valid columns: {columns}
|
78 |
+
|
79 |
+
Response:
|
80 |
+
"""
|
81 |
+
prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
|
82 |
+
llm = LangchainOpenAI(temperature=0)
|
83 |
+
sql_generation_chain = LLMChain(llm=llm, prompt=prompt)
|
84 |
+
|
85 |
+
# Define the callback function
|
86 |
+
def process_input():
|
87 |
+
user_prompt = st.session_state['user_input']
|
88 |
+
|
89 |
+
if user_prompt:
|
90 |
+
try:
|
91 |
+
# Append user message to history
|
92 |
+
st.session_state.history.append({"role": "user", "content": user_prompt})
|
93 |
+
|
94 |
+
if "columns" in user_prompt.lower():
|
95 |
+
assistant_response = f"The columns are: {', '.join(valid_columns)}"
|
96 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
97 |
+
else:
|
98 |
+
columns = ', '.join(valid_columns)
|
99 |
+
response = sql_generation_chain.run({
|
100 |
+
'question': user_prompt,
|
101 |
+
'table_name': table_name,
|
102 |
+
'columns': columns
|
103 |
+
})
|
104 |
+
|
105 |
+
# Extract code from response
|
106 |
+
code = extract_code(response)
|
107 |
+
if code:
|
108 |
+
# Determine if the code is SQL or Python
|
109 |
+
if code.strip().lower().startswith('select'):
|
110 |
+
# It's a SQL query
|
111 |
+
st.write(f"Generated SQL Query:\n{code}")
|
112 |
+
try:
|
113 |
+
# Execute the SQL query
|
114 |
+
result = pd.read_sql_query(code, conn)
|
115 |
+
assistant_response = f"Generated SQL Query:\n{code}"
|
116 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
117 |
+
st.session_state.history.append({"role": "assistant", "content": result})
|
118 |
+
except Exception as e:
|
119 |
+
logging.error(f"An error occurred during SQL execution: {e}")
|
120 |
+
assistant_response = f"Error executing SQL query: {e}"
|
121 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
122 |
+
else:
|
123 |
+
# It's Python code
|
124 |
+
st.write(f"Generated Python Code:\n{code}")
|
125 |
+
try:
|
126 |
+
# Prepare the local namespace
|
127 |
+
local_vars = {
|
128 |
+
'pd': pd,
|
129 |
+
'np': np,
|
130 |
+
'data': data.copy(),
|
131 |
+
'result': None,
|
132 |
+
'LinearRegression': LinearRegression,
|
133 |
+
'train_test_split': train_test_split,
|
134 |
+
'mean_squared_error': mean_squared_error,
|
135 |
+
'r2_score': r2_score
|
136 |
+
}
|
137 |
+
exec(code, {}, local_vars)
|
138 |
+
result = local_vars.get('result')
|
139 |
+
if result is not None:
|
140 |
+
assistant_response = "Result:"
|
141 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
142 |
+
st.session_state.history.append({"role": "assistant", "content": result})
|
143 |
+
else:
|
144 |
+
assistant_response = "Code executed successfully."
|
145 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
146 |
+
except Exception as e:
|
147 |
+
logging.error(f"An error occurred during code execution: {e}")
|
148 |
+
assistant_response = f"Error executing code: {e}"
|
149 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
150 |
+
else:
|
151 |
+
assistant_response = response.strip()
|
152 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
logging.error(f"An error occurred: {e}")
|
156 |
+
assistant_response = f"Error: {e}"
|
157 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
158 |
+
|
159 |
+
# Reset the user_input in session state
|
160 |
+
st.session_state['user_input'] = ''
|
161 |
+
|
162 |
+
# Display the conversation history
|
163 |
+
for message in st.session_state.history:
|
164 |
+
if message['role'] == 'user':
|
165 |
+
st.markdown(f"**User:** {message['content']}")
|
166 |
+
elif message['role'] == 'assistant':
|
167 |
+
content = message['content']
|
168 |
+
if isinstance(content, pd.DataFrame):
|
169 |
+
st.markdown("**Assistant:** Here are the results:")
|
170 |
+
st.dataframe(content)
|
171 |
+
elif isinstance(content, (int, float)):
|
172 |
+
st.markdown(f"**Assistant:** {content}")
|
173 |
+
elif isinstance(content, dict):
|
174 |
+
st.markdown("**Assistant:** Here are the results:")
|
175 |
+
st.json(content)
|
176 |
else:
|
177 |
+
st.markdown(f"**Assistant:** {content}")
|
178 |
+
|
179 |
+
# Place the input field at the bottom with the callback
|
180 |
+
st.text_input("Enter your message:", key='user_input', on_change=process_input)
|
|
|
|
|
|
|
|