Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import streamlit as st
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
from langchain import OpenAI, LLMChain, PromptTemplate
|
6 |
-
from langchain_community.utilities import SQLDatabase
|
7 |
import sqlparse
|
8 |
import logging
|
9 |
from sql_metadata import Parser
|
@@ -12,47 +12,104 @@ from sql_metadata import Parser
|
|
12 |
if 'history' not in st.session_state:
|
13 |
st.session_state.history = []
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
st.session_state.history.append({"role": "user", "content": user_prompt})
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
'question': user_prompt,
|
28 |
-
'table_name': table_name,
|
29 |
-
'columns': columns
|
30 |
-
})
|
31 |
-
|
32 |
-
# Validate SQL query
|
33 |
-
if not validate_sql_with_sqlparse(generated_sql):
|
34 |
-
assistant_response = "Generated SQL is not valid."
|
35 |
-
elif not validate_sql(generated_sql, valid_columns):
|
36 |
-
assistant_response = "Generated SQL references invalid columns."
|
37 |
else:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
# Rerun the script to update the conversation display
|
55 |
-
st.experimental_rerun()
|
56 |
|
57 |
# Display the conversation history
|
58 |
for message in st.session_state.history:
|
@@ -64,3 +121,6 @@ for message in st.session_state.history:
|
|
64 |
st.dataframe(message['content'])
|
65 |
else:
|
66 |
st.markdown(f"**Assistant:** {message['content']}")
|
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
from langchain import OpenAI, LLMChain, PromptTemplate
|
6 |
+
# Removed unused import: from langchain_community.utilities import SQLDatabase
|
7 |
import sqlparse
|
8 |
import logging
|
9 |
from sql_metadata import Parser
|
|
|
12 |
if 'history' not in st.session_state:
|
13 |
st.session_state.history = []
|
14 |
|
15 |
+
# OpenAI API key (ensure it is securely stored)
|
16 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
17 |
|
18 |
+
# Step 1: Upload CSV data file (or use default)
|
19 |
+
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
20 |
+
if csv_file is None:
|
21 |
+
data = pd.read_csv("default_data.csv") # Use default CSV if no file is uploaded
|
22 |
+
st.write("Using default_data.csv file.")
|
23 |
+
else:
|
24 |
+
data = pd.read_csv(csv_file)
|
25 |
+
st.write(f"Data Preview ({csv_file.name}):")
|
26 |
+
st.dataframe(data.head())
|
27 |
+
|
28 |
+
# Step 2: Load CSV data into a persistent SQLite database
|
29 |
+
db_file = 'my_database.db'
|
30 |
+
conn = sqlite3.connect(db_file)
|
31 |
+
table_name = csv_file.name.split('.')[0] if csv_file else "default_table"
|
32 |
+
data.to_sql(table_name, conn, index=False, if_exists='replace')
|
33 |
+
|
34 |
+
# SQL table metadata (for validation and schema)
|
35 |
+
valid_columns = list(data.columns)
|
36 |
+
st.write(f"Valid columns: {valid_columns}")
|
37 |
+
|
38 |
+
# Step 3: Define SQL validation helpers
|
39 |
+
def validate_sql(query, valid_columns):
|
40 |
+
"""Validates the SQL query by ensuring it references only valid columns."""
|
41 |
+
parser = Parser(query)
|
42 |
+
columns_in_query = parser.columns
|
43 |
+
for column in columns_in_query:
|
44 |
+
if column not in valid_columns:
|
45 |
+
st.write(f"Invalid column detected: {column}")
|
46 |
+
return False
|
47 |
+
return True
|
48 |
+
|
49 |
+
def validate_sql_with_sqlparse(query):
|
50 |
+
"""Validates SQL syntax using sqlparse."""
|
51 |
+
parsed_query = sqlparse.parse(query)
|
52 |
+
return len(parsed_query) > 0
|
53 |
+
|
54 |
+
# Step 4: Set up the LLM Chain to generate SQL queries
|
55 |
+
template = """
|
56 |
+
You are an expert data scientist. Given a natural language question, the name of the table, and a list of valid columns, generate a valid SQL query that answers the question.
|
57 |
+
|
58 |
+
Question: {question}
|
59 |
+
|
60 |
+
Table name: {table_name}
|
61 |
+
|
62 |
+
Valid columns: {columns}
|
63 |
+
|
64 |
+
SQL Query:
|
65 |
+
"""
|
66 |
+
prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
|
67 |
+
sql_generation_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
|
68 |
+
|
69 |
+
# Define the callback function
|
70 |
+
def process_input():
|
71 |
+
user_prompt = st.session_state['user_input']
|
72 |
+
|
73 |
+
if user_prompt:
|
74 |
+
try:
|
75 |
+
# Append user message to history
|
76 |
st.session_state.history.append({"role": "user", "content": user_prompt})
|
77 |
+
|
78 |
+
if "columns" in user_prompt.lower():
|
79 |
+
assistant_response = f"The columns are: {', '.join(valid_columns)}"
|
80 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
else:
|
82 |
+
columns = ', '.join(valid_columns)
|
83 |
+
generated_sql = sql_generation_chain.run({
|
84 |
+
'question': user_prompt,
|
85 |
+
'table_name': table_name,
|
86 |
+
'columns': columns
|
87 |
+
})
|
88 |
|
89 |
+
# Debug: Display generated SQL query for inspection
|
90 |
+
# st.write(f"Generated SQL Query:\n{generated_sql}")
|
91 |
+
|
92 |
+
# Validate SQL query
|
93 |
+
if not validate_sql_with_sqlparse(generated_sql):
|
94 |
+
assistant_response = "Generated SQL is not valid."
|
95 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
96 |
+
elif not validate_sql(generated_sql, valid_columns):
|
97 |
+
assistant_response = "Generated SQL references invalid columns."
|
98 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
99 |
+
else:
|
100 |
+
# Execute SQL query
|
101 |
+
result = pd.read_sql_query(generated_sql, conn)
|
102 |
+
assistant_response = f"Generated SQL Query:\n{generated_sql}"
|
103 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
104 |
+
st.session_state.history.append({"role": "assistant", "content": result})
|
105 |
|
106 |
+
except Exception as e:
|
107 |
+
logging.error(f"An error occurred: {e}")
|
108 |
+
assistant_response = f"Error: {e}"
|
109 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
110 |
|
111 |
+
# Reset the user_input in session state
|
112 |
+
st.session_state['user_input'] = ''
|
|
|
|
|
113 |
|
114 |
# Display the conversation history
|
115 |
for message in st.session_state.history:
|
|
|
121 |
st.dataframe(message['content'])
|
122 |
else:
|
123 |
st.markdown(f"**Assistant:** {message['content']}")
|
124 |
+
|
125 |
+
# Place the input field at the bottom with the callback
|
126 |
+
st.text_input("Enter your message:", key='user_input', on_change=process_input)
|