Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ if not openai_api_key:
|
|
20 |
st.stop()
|
21 |
|
22 |
# Step 1: Upload CSV data file (or use default)
|
23 |
-
st.title("Natural Language to SQL Query App with
|
24 |
st.write("Upload a CSV file to get started, or use the default dataset.")
|
25 |
|
26 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
@@ -71,29 +71,29 @@ sql_generation_chain = LLMChain(llm=llm, prompt=sql_prompt)
|
|
71 |
|
72 |
# Insights Generation Chain
|
73 |
insights_template = """
|
74 |
-
You are an expert data scientist. Based on the user's question and the SQL query result provided below, generate a concise and informative analysis that includes data insights
|
75 |
|
76 |
User's Question: {question}
|
77 |
|
78 |
SQL Query Result:
|
79 |
{result}
|
80 |
|
81 |
-
Analysis
|
82 |
"""
|
83 |
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
84 |
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
You are an expert data scientist. Based on the
|
89 |
|
90 |
Dataset Summary:
|
91 |
{dataset_summary}
|
92 |
|
93 |
-
|
94 |
"""
|
95 |
-
|
96 |
-
|
97 |
|
98 |
# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
|
99 |
def clean_sql_query(query):
|
@@ -121,7 +121,7 @@ def clean_sql_query(query):
|
|
121 |
def classify_query(question):
|
122 |
"""Classify the user query as either 'SQL' or 'INSIGHTS'."""
|
123 |
classification_template = """
|
124 |
-
You are an AI assistant that classifies user queries into two categories: 'SQL' for specific data retrieval queries and 'INSIGHTS' for general analytical
|
125 |
|
126 |
Determine the appropriate category for the following user question.
|
127 |
|
@@ -178,19 +178,8 @@ def process_input():
|
|
178 |
}).strip()
|
179 |
|
180 |
if generated_sql.upper() == "NO_SQL":
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
# Generate dataset summary
|
185 |
-
dataset_summary = generate_dataset_summary(data)
|
186 |
-
|
187 |
-
# Generate general insights and recommendations
|
188 |
-
general_insights = general_insights_chain.run({
|
189 |
-
'dataset_summary': dataset_summary
|
190 |
-
})
|
191 |
-
|
192 |
-
# Append the assistant's insights to the history
|
193 |
-
st.session_state.history.append({"role": "assistant", "content": general_insights})
|
194 |
else:
|
195 |
# Clean the SQL query
|
196 |
cleaned_sql = clean_sql_query(generated_sql)
|
@@ -207,7 +196,7 @@ def process_input():
|
|
207 |
# Convert the result to a string for the insights prompt
|
208 |
result_str = result.head(10).to_string(index=False) # Limit to first 10 rows
|
209 |
|
210 |
-
# Generate insights
|
211 |
insights = insights_chain.run({
|
212 |
'question': user_prompt,
|
213 |
'result': result_str
|
@@ -222,16 +211,29 @@ def process_input():
|
|
222 |
assistant_response = f"Error executing SQL query: {e}"
|
223 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
224 |
else: # INSIGHTS category
|
225 |
-
|
226 |
-
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
except Exception as e:
|
237 |
logging.error(f"An error occurred: {e}")
|
|
|
20 |
st.stop()
|
21 |
|
22 |
# Step 1: Upload CSV data file (or use default)
|
23 |
+
st.title("Natural Language to SQL Query App with Dynamic Insights")
|
24 |
st.write("Upload a CSV file to get started, or use the default dataset.")
|
25 |
|
26 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
|
|
71 |
|
72 |
# Insights Generation Chain
|
73 |
insights_template = """
|
74 |
+
You are an expert data scientist. Based on the user's question and the SQL query result provided below, generate a concise and informative analysis that includes data insights.
|
75 |
|
76 |
User's Question: {question}
|
77 |
|
78 |
SQL Query Result:
|
79 |
{result}
|
80 |
|
81 |
+
Analysis:
|
82 |
"""
|
83 |
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
84 |
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
85 |
|
86 |
+
# Recommendations Generation Chain
|
87 |
+
recommendations_template = """
|
88 |
+
You are an expert data scientist. Based on the dataset summary provided below, generate actionable recommendations for improving performance.
|
89 |
|
90 |
Dataset Summary:
|
91 |
{dataset_summary}
|
92 |
|
93 |
+
Recommendations:
|
94 |
"""
|
95 |
+
recommendations_prompt = PromptTemplate(template=recommendations_template, input_variables=['dataset_summary'])
|
96 |
+
recommendations_chain = LLMChain(llm=llm, prompt=recommendations_prompt)
|
97 |
|
98 |
# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
|
99 |
def clean_sql_query(query):
|
|
|
121 |
def classify_query(question):
|
122 |
"""Classify the user query as either 'SQL' or 'INSIGHTS'."""
|
123 |
classification_template = """
|
124 |
+
You are an AI assistant that classifies user queries into two categories: 'SQL' for specific data retrieval queries and 'INSIGHTS' for general analytical queries.
|
125 |
|
126 |
Determine the appropriate category for the following user question.
|
127 |
|
|
|
178 |
}).strip()
|
179 |
|
180 |
if generated_sql.upper() == "NO_SQL":
|
181 |
+
assistant_response = "This query is too vague for generating SQL. Please ask a more specific question."
|
182 |
+
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
else:
|
184 |
# Clean the SQL query
|
185 |
cleaned_sql = clean_sql_query(generated_sql)
|
|
|
196 |
# Convert the result to a string for the insights prompt
|
197 |
result_str = result.head(10).to_string(index=False) # Limit to first 10 rows
|
198 |
|
199 |
+
# Generate insights based on the query result
|
200 |
insights = insights_chain.run({
|
201 |
'question': user_prompt,
|
202 |
'result': result_str
|
|
|
211 |
assistant_response = f"Error executing SQL query: {e}"
|
212 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
213 |
else: # INSIGHTS category
|
214 |
+
if "recommendations" in user_prompt.lower():
|
215 |
+
# Generate dataset summary for recommendations
|
216 |
+
dataset_summary = generate_dataset_summary(data)
|
217 |
|
218 |
+
# Generate recommendations based on the dataset summary
|
219 |
+
recommendations = recommendations_chain.run({
|
220 |
+
'dataset_summary': dataset_summary
|
221 |
+
})
|
222 |
|
223 |
+
# Append the assistant's recommendations to the history
|
224 |
+
st.session_state.history.append({"role": "assistant", "content": recommendations})
|
225 |
+
else:
|
226 |
+
# Generate dataset summary for general insights (without recommendations)
|
227 |
+
dataset_summary = generate_dataset_summary(data)
|
228 |
+
|
229 |
+
# Generate general insights
|
230 |
+
general_insights = insights_chain.run({
|
231 |
+
'question': user_prompt,
|
232 |
+
'result': dataset_summary
|
233 |
+
})
|
234 |
+
|
235 |
+
# Append the assistant's general insights to the history
|
236 |
+
st.session_state.history.append({"role": "assistant", "content": general_insights})
|
237 |
|
238 |
except Exception as e:
|
239 |
logging.error(f"An error occurred: {e}")
|